THE AUSTRALIAN ASCIDIACEA PART 3 , APLOUSOBRANCHIA (2)

PATRICIA KOTT

Kotn, P. 19921001 : The Australian Ascidiacea Part 3, Aplousobranchia (2). Memoirs of the Queensland Museum 32(2): 375-620. Brisbane. ISSN 0079-8835.

In this continuing systematic revision of the taxonomy of the class Ascidiacea (subphylum Tunicata) taxa in the Cormerly polyphylecic family Polyclinidae Milne Edwards are treated. Included are all species recorded from Australian waters with a posteriorabdomen containing the gonads, and usually the heart. New famalies are erceted to accommodate the genera formerly grouped in the polyphyletic Euherdmaniinac, viz. Placentelidae (Placentela), Protopolyclinidae (Protopolyclinum, Momnious, Condeminimm n.gen.), Ritterellidac (Kisderella, Dumus, Pharyngedicyton). Eulıcrdmanädac (Eulıerdnamia) and Pscudodisiomidac (Pseudodistoma, Antadistoma n.gen., Cirorclinum). The 「amily Polyclinidae is redelined and testricted to the genera fornerly comprising the nominal subfamily Polyclininae, viz. Polyclinun, Aplidiopsis, Siducioides, Synoicum, Morchellium and Aplidimm.
Larvac, observed for the majority of species, have characters significant at species, genus and family levels, and constitute valuable evidence of phylogenetic affinities. Embryos are incubated to tailed larvae internally in all taxa, usually heing fertilised and beginning their alevelopment in the distal part of the oviduct, sometimes in a brood pouch constricted off from the zooid and sometimes at the base of the oviduct.
Colony development is signilicant in thes group of aplousobranch taxa in which reptication is prolific. Zooids are arranged in various colomial, including cloacal, systems. In taxa with extensive cloacal spaces (Aplidium), and in those with a solt test (c.g. Polyclimem), intracolonial hydrostatic pressure appears to contribute to colony turgidity. Sand athd other inclusions in the test add strength and contribute to diversity in colony size and shape.
Parallel reduction in the size of zooids often results in convergent evolution, especially in size (number of rows of stigmata and number per row) of the branchial sac and size of larvace. Some taxa (P 'seudodistoma, Polyclinum) have zoolids and larvae with conservative morphology, and differences in colonial systems and colony shape and bextare often determine species-level taxa. Zooid and larval mophology are more diverse in Rifferella, Syoncum, Aplidiopsis and Aplidium, with differences in the atrial aperture, stigmata, stomach wall and arrangement ol larval ampullac and vesieles, as well as features of ite colony and its systems. providing characters for species determination. Other characters, such as the nature of the larval adhesive apparatus, presence of branehial papillae, length of the ocsophagus, nature of the stomath wall, and shape of the posterior ahdomen and arrangement of male follicles in it, are signilicant indicators of relationships at higher (genus or family) taxon levels.
Sixty-two of the total of 110 species treated in this work are new. Many may be indigenous, but these families are not always well sampled, not ofien being found intertidally. Collection by SCUBA diving enables a diversity of habitats to be sampled and the range of forms treated in this work is largely the result of efforts of these divers. Other difficultics in stadying this group, whict, have tesulted in synonymy and misidentification, are colour variation and its post mortem change and loss, loss ol colony and zoond turgor obscuring their shape and arrangement, and contractibility of zonids ohscuring their morphology.
The most diverse gencra in these waters are in the Polyclinidae, in which zooids are organised around well developed cloacal cavitics, Aplidium is the most diverse genus, and is well represented in both tropical and temperate waters by species with large and conspicuous colonies. Of the families with independently opening zooids without cloacal bystems, Pseudodistomidae and Ritterellidac are well represented, especially in certain temperate locations. Euherdmaniidac and Protopolyclinidae are less diverse alhougll cach contains some species with wide temperate gcographic ranges common in cerlain localions. \square Indo-West Pacific, Ascidiacea. Aplousohranchia. Placentelidac. Protopolyclinidae, Ritterellidae. Euherdmaniidae. Psemdodistomidae. Polyolinidite.

Parricia Kott, Qucensland Museum, PO Bow 3300. South Brisbane, Quensland 4101, Austruliu. I April, 1992.

Frontispiece: larvae of Aplousobranchia - a, Pseudodistoma australe (see Fig. 17g); b, Euherdmania digitata (see Fig. 13f); c, Polyclinum fingosum n.sp. (see Fig. 25d); d, Aplidium inflorescens n.sp. (see Fig. 82c); e, Aplidium altarium (see Fig. 62c); f, Aplidium filiforme n.sp. (see Fig. 75e).

CONTENTS

Introduction 378
Acknowledgements, 378
Annotated Glossary 380
POLYCLINIDAE sensu Milne Edwards, 1842390
PLACENTELIDAE n.fam. 391
PROTOPOLYCLINIDAE n.fam. 392
Monniolus 393
M. custralis (Kott. 1957) 394
M. radiutus n.sp. 396
Condominium n.gen. 396
C. areolatum (Koll. 1963) 397
RITTERELLIDAEn.fam. 394
Ritterella 400
R. asymmetrica Millar, 1966 402
R. cumpacta n.sp 403
R. carmutu n.sp. 405
R. dispar Kott, 1957 406
R. mullistigmata n.sp. 408
R. papillatu n.sp. 409
R. pectunculata (Herdman, 1899) 410
Dumıs. 412
D. areniferus Brewin, 1952 413
EUHERDMANIIDAE Ritter, 1904 emend. 413
Euheridnania 415
E. dematosiplonis (Millar, 1975) 416
E. digitata Millar, 1963 417
E. translucida n.sp 420
PSEUDODISTOMIDAE n. โan. 421
Psendodisfonna. 422
P. achurum n.sp. 425
P. anrewm (Brewin, 1957) 426
P. australe Koth, 19.57 428
P. camtens n.sp 429
P. gracilum n.sp. 433
P. inflatum n.sp. 435
P. oriens n.sp. 436
P pilarum n.sp. 439
P. pulvinum n.sp. 439
Alnadislomu n.gen. 440
A. attenuatum n.sp. 440
POLYCLINIDAE emend. 441
Folychinum 443
P. fungosum Herdman, 1886 447
P. glabrum Sluiter. 1895 448
P. incrustanm Michaelsen, 1930 450
P. marsupiale Kolt, 1963 452
P. muchum n.sp. 454
P. orbilmm n.sp. 4.55
P. saruruinm Savigny, 1816 455
P. solum nom.nov. 458
P teruatut" n.sp. 459
P. terramum n.sp 461
P. tsusuii Tokioka, 1954 463
P. vasculosum Pizon. 1908 464
Aplidiopsis 467
A. confluata nisp. 468
A. manmillata n.sp. 469
A. sabulosa n.sp. 470
Sidneioiden 471
S. tamaramae Kesteven, 1909 472
Synoicmn 473
S. cungustum n.sp 477
S. arennceum (Michaelsen, 1924) 478
S. atapogaster Kolt, 1963 478
S. bowerbanki Millar, 1963 480
S. buccinmm n.sp. 481
S. castellatum n.sp. 483
S. chrysanthemum n.sp. 485
S. citrum n.sp. 486
S. concavitum n.sp. 487
S. cluram n.sp. 488
S. crectum n.sp 489
S. galein.sp. 490
S. intercedens (Sluiter, 1909) 491
S. longisrriarmen n.sp. 493
S. macroglossum (Hartmeyer, 1919) 494
S. obscurum n.sp. 496
S. papilliferum (Michaclsen, 1930 (i) 497
S. prunum (Herdman, 1899) 498
S. seicculuminnsp, 499
S. swaremum n.sp. 501
S. tropirum (Sluiter, 1909) 503
Murchellium. 504
M. alhidum n.sp 505
M. paumosum n.sp. 506
Aplidium. 507
A. acroporum n.sp. 513
A. altarium (Sluiter 1909) 519
A. amarphatum Kott, 1963 522
A. australiense Kott. 1963 523
A. bacculumin.sp. 526
A. brevilarnacium Kott. 1963 527
A. cuelestis Monniot, 1987 528
A. clivasum n.sp. 530
A. connregatum n.sp. 533
A. conifermu Kott, 1963 535
A. craterifermm (Sluiter. 1909) 536
A. depressum Sluiter. 1909 538
A. directun Kott. 1972 539
A. distaplium n.sp.. 540
A. elafum Kott, 1972 541
A. filiforme n.sp 542
A. Juoresculle n.sp. 544
A. gastralinearmm n.sp. 546
A. gelasinum n.sp. 547
A. geminattum n .sp. 548
A. griseum n.sp. 551
A. incuhaturn n.sp. 551
A. inflorescens nsp. 553
A. jucksoni Koll. 1963 554
A. levticulam nisp. 555
A. Lodix n.sp 557
A. lunacratum nom.nov 558
A. mucrolobatum insp 561
A. magnilarvum n,sp 563
A. minisculum n.sp. 564
A. multilineatum $\mathrm{n} . \mathrm{sp}$. 566
A, multiplicatum Sluiter, 1909 567
A. opacum Kott, 1963 570
A. ornaium n.sp 572
A. paralineatum n.sp. 574
A. parastigmaticum n.sp. 575
A. parvum Kolt, 1963 577
A. perrosum in.sp. 577
A. protectans (Herdman, 1899) 579
A. ritteri (Sluiter, 1895) 581
A. robustum n.sp- 582
A. rosarium n.sp. 583
A. rubricollum Kott, 1963 584
A. solidum (Herdman, I899) 586
A. tabascum n.sp. 589
A. triggsense Kott, 1963 590
A. ueute Monniot and Monniot, 1987 592

INTRODUCTION

Ascidians of the suborders Phlebobranchia (one of the 2 suborders of the order Enterogona) and Stolidobranchia (the only suborder of the order Pleurogona) were reported on in part 1 of the present work (Ko1t 1985); and 7 families of Aplousobranchia (the other suborder of the Enterogona) were dealt with in part 2 (Kott 1990). The following account (part 3) continues the review of the Aplousobranchia, dealing with genera formerly contained in the family Polyclinidae Milne Edwards, 1842. These genera are here assigned to 6 different families, 5 of them new (Table 1).

Didemnidae (Aplousobranchia), the only family not yet treated, will comprise part 4 of this monographic treatment of the Ascidiacea in Australia.

The collections on which the work is based are those set out in parts 1 and 2 (Kott 1985, 1990). Museums housing the material examined are teferred to by the following abbreviations: AM , Australian Muscum, Syancy, New South Wales; BM 4 British Museum (Natural History), London, UK; QM, Queensland Museum, Brisbane, Queensland; SAM, Sourh Australian Museum, Adelaide, South Australia; TM, Tasmanian Museum, Hobart, Tasmania; MV, Muscum of Victoria, Melbourne, Victoria; NTM, Northern Tertitory Museum, Darwin, Northern Territory; WAM, Western Australian Muscum, Perth, Western Australia; USNM, US National Museum of Natural History, Smithsonian Institution. Washington DC, USA; ZMA, Zoological Mu-
seum of Amsterdam, Amsterdam, Netherlands: ZMC, Zoological Museum, University of Copenhagen, Copenhagen, Deninark. AMPI refers to the Australian Marine Photographic Index (Neville Coleman).

All specimens referred to by a museum registration number have been examined in the course of the present study. A registration number in italics refers to a sampled portion of the preceding colony.

Throughout this work, the characters of species are summarised to provide a general overview of the diversity of each genus. Dichotomous keys are presented as aids to the identification of taxa at all levels. They have been prepared, as far as possible, to reflect phylogeny. This type of key is gencrally used for biological material in preference to tabular keys such as those in Monniot (1987). The latter provide too rigid a framework for the analysis of diverse biological material, communicate only a limited amount of information, lack the flexibility to distinguish between convergent and phylogenetic relationships, are open to subjective interpretation, and are unnecessarily unwieldly and ambiguous to use.
Procedures for coilection and examination of species are set out in Kott (1990). Examination of specimens is by stereoscopic and compound light microscopy. All larvae are described from stained and mounted specimens taken from adult colonies as indicated.

ACKNOWLEDGEMENTS

I am grateful to those of my collegues, as set out in parts 1 and 2 , who, in various material ways. have contributed to the preparation and presentation of these volumes; and to those who have made less tangible, but equally significant contributions by their support and encouragement.

The black and white figures were prepared from camera lucida and other sketches of the specimens by Stephen Cook (Figs 1a-d, 2-6, 7b-d, 8a, 9a-f, 11a-f, 13a-c, 14, 17b-3, 18a-c, 19, 21a, 24, 27, 28a, 35a,b-e); Lucille Crevola Gillespie (Figs. 7a, 17a, 22a): and John Kennedy (all other figures including the laryae of all taxa). Peta Woodgate typed the manuscript. I am grateful to them all. Sue Boyd with Christine Mateira in the Museum of Victoria; Penny Berents in the Australian Museum, Loisette Marsh with Jean Thipthoip in the Western Australian Museum, and Wolfgang Zeidler with Karen Gowlet Holmes in the South Australian Museum have been co-op-

TABLE 1. Ascidiacea - Graphic Key to families
erative and prompt in response to my many requests for large specimen loans.
During 1991 large collections from all around Australia also became available to me from the Australian Institute of Marine Science (AIMS), Townsville, through Dr Peter Murphy. This important collection was made by Rob McCauley
and his colleagues (AIMS Bioactivity Group), by SCUBA, as part of their Shallow Water Marine Organism Collection Program for the National Cancer Institute (1992-1996). This collection includes photographs of the living colonies in situ. The voucher specimens are now registered in the collection of the Queensland Museum.

Grants from ABRS (1980-82) and MST (83/1320) supported the author's field programme. The work was also supported by the ARC (A19031140).

ANNOTATED GLOSSARY

A discussion of the morphology of aplousobranch ascidians and their larvae in the Austratian Ascidiacea Part 2 (Koll 1990) refers particularly, although not exclusively, to Families reviewed therein. Morphological features, and their variations and functional implications that have not been discussed previously. are reviewed in the glos:ary that follows. It should be used in conjunction with the glossaries in parts 1 and 2 (Kott 1985, 1990) to appreciate the full tange of functional adeplations and other morphological variations in ascidians, (with the exception of the Didemnidae).
adhesive organs: Each of the 4 types of adhesive organs present in the families discassed below, occurs also in other possibly related aplonsobranch families.

1. Deeply invaginated tubular adhesive organs, as in Pyenoclavellidac, are in Euherdmanidae. They are arranged in a triangle when 3 , or in the median line when only 2 . They suggest a relationship with Pyonoclavellidae,
2. The 3 median adhesive organs in Pseudodistomidae have a hollow, completely eversible axial protrusion in a deep epidermal cup and are either sessile or stalked. The axial protrusion is flat-topped or conical, and apparently lacks the columar cells lound in the axial cones of Holozoidae (Distaplia; see Cloney 1977). When everted it is thin-walled and balloonLike, and may bave closer affinities with the ridhesive organs of Pycnoclavellidac than any others.
3. The 3 median adhesive orgoins in Protopolyclinidac are stalked, and have an ax ial cone composed of long columnar cells in a deep epidermal cup, They resemble the adhesive organs of Holozoidae (sce Cloney 1977) and Didemnidae (see Taron 1991).
4. The 3 stalked adhesive organs in the anterior mid-line in Ritterellidac and Polyclinidae have a shallow, wide axinl cone in a tight epidermal cup. These tesemble the adhesive organs of Polycitoridae, although they are smaller. Their relationship to the adhesive organs of Clavelinidae, and Holozoidae awaits investigation.
Epidermal ampullae may also have an accessory adthesive function. (See also larvae, ampullae, vesicles).
ampullae, epidermal - larval - : Outgrowths of the anterion larval epidermis, possibly accessory adhesive organs. In Aplousobranchia they are absent from †ycroctavella, Euherdmania and a lew other species level taxa in other genern in which size reduction appears to have resulted in simplification.
Ampullac project from the base of triradial adiesive organs (Clavelimides, Holozoidre), Ampullac arise from lateral ridges along each sido of median
adhestive organs and also from the median line alternalung with them (Polycitoridae, Protopolyclinidae n. Fim., Ritterellidae n. fam . Pseudodislomidac n.fam_, Polyclinidac). In the now familics Protopolyclinidae (Monnionus) and Ritterellidae (Dumus), and in Polyclinidae (Polyclinum, Aplidiopsis and some Aplidium spp.) the terminal ends of the ampullae have a cap of modified, possibly secretory cells. (See larvae, vesicles).
ampullary vesicles: see vesicles
anal opening, anus: The rectum continues anteriorly, embedded in the body wall along the dorsal border of the pharynx. Its opening into the atrial cavity is invariably bilabiate in the present aplousobranch families. Its position retalive to the alrial apertures (which are normally antero-dorsal) appears determined by selective pressures affecting the position of gonoducal openings. Faecal pellets are found in the rectum but never in the atrial cavity. Presumably, when necessary, the anus is brought into a position near the base of the atrial siphon by muscular action, so that the faecal pellets can be ejected directly to the exterior, Although the oviduct is sometimes diverted into a brood pouch, or is tumed ventrally, the opening of the vas deferens is usually associated closely with the anus, the advantage possibly being that sperm also ean be expelled directly to the exterior with the excurrent water.

In Placentelidae n.fam., in which numerous embryos are incubated in what probably is an elaborate brood pouch in the distal part of the oviduct (where it lies in the atrial cavity), the anus is in a primitive position in the anterior part of the atrial cavity, opposite the second or third row of stigmata. This is in a position comparable with most Diazonidac, in which the gonoducal openings, at the base of the atrial aperture, are associated with the release of gametes directly to the exterior for external fertilisation.

The anus and gonoducal openings are at mid-thoracic level in most other genera discussed below. In all these families fertilisation and incubation is either in the atrial eavity or in the distal part of the oviduct, Only in Euberdmaniidac and the (probably) related Pyenoclavellidae, both with characteristically long abdomina, are anal and gonoducal openings at the base of the atrial cavity; and in both fertilisation is at the base of the oviduct - at the posterior end of the long ahdomen.
apertures: In most-aplousobranch ascidians, irrespeclive of the form of their systems, hranchial apertures are 6-lobed. Exceptions in which the branchial apertures are 8 -lobed are in some Ritteralla spp. (viz. R. pedurculata), Aplidium spp. (e.g. A. amorphatam. A. protectans) and Morcheltium. Apparent subdivision of branchial lobes in some species Aplidiont (c.g. A. macrolobatam n, sp, and A. incubatum $\mathrm{n} . \mathrm{sp}$.) results from contraction of a band of museles that extends up the centre to the tip of each lobe.

Separatcly opening 6-lobed atrial, as well as branchisl, apertures interrupt the surface test of colonies
in the rew families Placentelidae, Protopolyclinidac, Ritterellidae, Euherdmaniidac, and Pseudodistomidae. None of these contain genera with true cloacal systems although other colonial systems, or rudimentary cloacal systerns, sometimes occur. Some narrow, stalked Ritterellidae n.farm. (R, asymmelrica, R. pedunculata) have the zooids in colonial systems with atrial apertures in a row along one side of the flattened, terminal edge of each stalk, and branchial apertures in a row on tho opposite side. In other species (R. papillata n.sp., R, cornuta n.sp., R compacta $n . S p$.) the atrial apertures are in the contre of the terminal end of tobes of the colony surrounded by the branchial apertures to form rudimentary cloacal systems in which excufrent water from all zooids is ejected in a single stream from the centre of the circular system. Similar rudimentary cloacal systems oceur in Polycitoridae (see Kot 1989, 1990). At least in R. cornuta n.sp,, in situ photographs show the flat terminal end of the colony lobe directed away from the oncoming current; and the excurtent stream of water from the centre of each end is entrained by the current as it passes the colony. The atrangement of the apentures of the separate zooids of Monniohus spp. is similar to Rimerella asymmetrica and R pedunculaia, witt atrial apertures on the convex side of the spoon-shaped head, and branchial openingson the concave side. A large flap of testatong their upper margin directs the branchial apertures downwards (Kott 1989). Also in Protopolyclinidaen.fam, colorial systems of Condominium n.gen. have zooids arranged in single lines along flat fan-shaped lamellae. Atrial apertures open in a line on the convex side of the lamella, near and parallel to the top of the colony, on the opposite side to the groove in which the branctial apertures are concealed. The row of atrial apertures are also concealed in a groove when zooids contract.

Very likely the linear arrangement of zooids and their apertures in the hard, sandy, offen rigid lest is a result of the pressures 10 direct and separate the respective incurrent and excurrent ciliary streams in these species with separately opening zooids. The compression of the atrial aperture into a transverse opening or slit and the division of its rim into an anterior and a posterior lip usually with 6 lobes on each (e.g. Mornioras, Condominium gen. nov. and some sandy Ritterella spp.) further controls and directs the incurtent and excument streamis of water.

The relatively large, usually gelatinous, separate zooids in Euherdmaniidac offen bave large external lobes around the apertures (c.g. E. dentatosiphortis, E. Jranslucida n.sp.) that tescmble those of Slomozoidae (see Kotl 1990), although in the latter family the zooids are not separate, belng embodded in common test. The function of these enlarged lobes around the apertures, which involve the rest as well as the body wall of the zooids, is not established, It is possible that they help to direct the ciliary curent, and, to some extent may act as sense organs through the pigment spots at their base which, like similor
pigment spots in Ciana, Diazonidae and some Phlebobranchia (see Kott 1985, 1990), may be light sensitive, Generally, the lobes around the apertures have musculature assocjated with the longitudinal muscle bands of the thorax, and the sphincter muscle that surrounds each aperture behind the lobes.

Zooids in stalked colonies of Pseudodistomidae are arranged in the colony like those of some species of Clavelinidar (Nephtheis), and Holozoidac (Sigillina), all with atrial apertures uppermost and branchial apertures directed toward the stalk so that each stalked head forms a singlo colonial (but mot cloacal) system as discussed by Kott (1989, 1990).

In Polyclinidae, the zooids are arranged in cloacal systems, cither around cloacal cavities, or along each side of cemals that converge to common cloacal uperturcs. The atrial apertures open into the sides of base of these cloacal cavities or canals. The openings either are relatively large, exposing part of the branchial sac to the cloacal cavity (as is Sycozoa or Dislaplia); of there is a short, narrow protubcrant siphon will a distinct sphincler muscle and a small terminal aperture. Each opening has a flattened atrial lip (or tongue) projecting from its uppet rim or from the body wall anterior to the opening, This projection is strap- or leaf-like, triangular or subdivided into 2 or 3 , and its tip is straight edged, pointed, bi- ot tri-dentate or serrated. Sometimes the circular muscle around the opening continues through the basc of the lip, ind muscle fibros from the sphineter extend out inm the lip (e.g. Aplidiwn utewe, A. altarimm and the roajority of Synoicum spe.), Other species, usually with protuberiant siphons, have the sphincter muscle (and the aperture) independent of the utriat tip (Aplidium craterifersunt and related species, and Polyclinum spp.)

The size of the atrial lip varies according to its role in effecting the closure of cloacal apertures and contraction of the cloacal canals. An example can be scen in Polyclinum vasculosum in which the anteriorly ofiented alrial apenture is in the base of the cloacal canals, while the large atrial hip stretches aloog the top of the canal, and in some cases reaches and is inserted inte the fest around the cloacal aperture.
akending limb of gut loop: see gut, gut loop.
utrial apserture, - lip - tongue: see apertures
atrial eavity: lo taxa in which it opens directly to the exteriut through a 6 -lobed atrial aperture, the atrial envity, ilssize varying with the size of the thorax, is arelatively contained chamber in which (otten large) numbers of embryos complete their development to tailed larvac. Onfy in some Pseudodistoma is a spos cial incubatory poucti constricted off from the atrial cavity.

In Polyclinidae the atrial cavity is a similarly constained chamber in those species in which the atrial aperture is a small anteriorly directed circular opening separate from the atrial tongue (viz. many Polyclinum, Sydneioides, and Aplidium species, and some Synoricum species). In the species in which the
atrial tougne is part of the rim of the aperture and the circular muscles of the aperture diverge out into the atrial lip, the aperture itself is less restricted, and when relaxed is a large opening exposing the atrial cavity directly to the cloacal cavity. Both types of atrial aperture are present in Aplidium and Synoicum. No apparent correlation exists between the size and Form of the atrial aperture and cavity and the size and number of embryos being incubated in the chamber. Only in Polyclinum, in which small circular atria! apertures prevail, are the embryos and larvae consistently small (trunk appreciably less than 1 mm long). In this genus embryos also are relatively numerous (usually more than 5 being incubated at a time). Although large atriat cavities result from the relatively narrow branchial sacs in the wide thoraces, the embryos seldom fill the atrial cavity, and in many species they are removed entirely from it , being incubated in a brood pouch separate from the atrial cavity. Under these circumstances, the atrial cavity is not occluded by embryos, and possibly remians functional during the period of their development.

The atrial cavities of smail Aplidium zooids with short, narrow branchial sacs, are relatively small and are subject to further constriction by longitudinal museles whicf extend the length of the zooids.

Odier variations in the configuration of the atrial cavity occour as a result of the connectives which conduct transverse muscle fibres from the transverse branchial vessels across the atrial cavity to the parictal body wall. In the large zooids of Syoicuin cassellatum n.sp, a row of these connectives appears to divide the atrial cavity into dorsal and ventral chambers (see S. castellatum n.sp. below). It is possible that these chambers are present also in smaller zocods, but not so readily observed.

In the taxa reviewed below, the ventral pouches in the atrial cavity observed in Sycozoa and Distaplia (see Koft 1990) are not present. These are formed where the cavity extends ventrally oves the perfotated area of pharyngeal wall but does not penetrate over the triangular areas of imperforate pharynx between the ventral ends of the rows of stigmata. (See also incubation of embryos)-
branchial papillae: possible vestiges of the branchial papillae which support the internal longitudinal branchial vessels in Phlebobranchis, and some aplousobranch families (Cionidae, Diazonidae), occur in Protopolyclinidac n.fam. (Protopolyelinum, Moratohus), Ritteredflas n.fsm. (Rillerelfa compactan.sp, R comula $\mathrm{n}, \mathrm{sp}, R$, mulfistignata $n . \mathrm{sp}$., R. papillowa insp.) and Polyclinidac (Polyclirum). These branctial payillace are Ital, rounded to short tongue-like projections from the transverse vessels.

Nothing is known of their function and their status as vestiges of phlebobranch branchial papillate is speculative.
branchial sac. In the present group of families the tranchal sat becomes progressively smaller, with fewer stigmata and fewer rows of stigmata, in prirallel with the refluctions in zooid size, Similar trends
can be observed in Polycitoridac (Pof)eitor to Eudistoma) and Holozoidae (Sigillina to Sycozoa and Distaplia). Placentelidae n.fam have a large broad pharynx with many rows of numerous stigmata. In Protopolyclinidae n,fam, the number of rows of stigmata as well as the length of each row are as great or greater (up to 20 rows of up to 50 stigmata in Comdominium n.gen.) than in Placentelidae n.fam. In Ritterellidae n.fam, the zooids arereduced insize and although stigmata are in up to 16 rows, often there are only 5, and in Durmus only 4. The number of stigmata in each row are similarly reduced from a maximum of 35 to 12 .

The branchial sacs (together with the solitary zooids) of Euherdmania, which does not replicate as frecly as other taxa, remain relatively large with numerous rows of up to 100 stigmata per row.

Psendodistomidae n . fam. have 3 long rows of stigmata, in a wide pharynx.

The greatest size reduction in zooids can be observed in the polyclinid genus Aplidium in which prolific replication occurs, and zooids are atranged in cloacal systems. In this genus the stigmata occasionally are in only 5 rows. Although the length of the stigmata offen is reduced, the number of rows is not, and most species have from I2 to 20 rows of stigmata. Synoicum species have similar reductions in size of the branchial sae. The most conspicuous difference between these genera and other polyclinid genera is their reduction in the size of the pertorated pharynx. Polyclinium and Aplidiopsiz have relatively large branchial sacs.

Invernal Iongiludinial branchial vessels are present only in Cionidac and Diazonidae, and the only vessels in the branchial sae of all other aplousoftyanch taxa are transverse. The primary transverse vessels are the unperforated expanses of the pharyngeal wall between the rows of stigmata. On their mesial side, the walts of these vessels are ciliated endoderan projecting into the fumen of the pharynx. On the parietal side the epithelium is ectodermal and not ciliated. Transverse musele fibres are in the transverse vessels and these join the muscles of the parietal hody wall through connectives that eross the atrial cavity (sce atrial cavity; Synoicum castellatam th.sp., below)

Parastigmatic vessels, extending across the stigmata lyallway between the primary transverse vessets, sometimes subdivide the stigmata along their length creating additional rows, More offen they ocent in species with long stigmata and persist as inconspicuous strands which hold the delicate interstigmatal bars in place, and prevent distortion of the stigmata. Parastigmatic vessels occur in Protopolyelinidge n.fam (Monniotus spp, and Condommum n.gen.) and Ritterellidacn.Eam. (e.g. Ritterella asymimetrica, R. multisfigmata $n, s p$.). Despite the large size of Euherdmania zooids, the stigmata are relatively short and disposed in mumerous rows. Parastigmatic vessels are not known in this genus nex are they known in the short branchial sacs of Pseudodis-
somidae n.fam. In Polyclinidae they are known in some spocies of Aplidium with relatively large branchial sacs (e.g. Aplidium amorphiahm, A. parastigmaticum $\mathrm{n} . \mathrm{sp}$.).
branchial tentacles: although these are not specifically counted in the descriptions that follow, a ring of short, relatively stampy tentacles of various sizes is always present at the base of the branchial siphom, protecting the incurtent aperture. Intrageneric variations in the tentacles do not appear significant taxonomically.
branchial wessels: see branchial sac.
brooding, brood pouch: see incnbation.
budding: see replication.
cloacal cavities, - systems: As in Polycitoridac (see Kots 1990) some other taxa with independently opening atrial apertures and embedded zooids have their zooids arranged in incipient or rudimentary cloacal systems. Thus, in Ritterellidae n,fam., R. papillara n.sp, and R. comuta n.sp. have zooids arranged in circles with their atrial apertures in a depression in the centre of the circle and their branchial apertures around the periphery; and in R, contpacra $n . \mathrm{sp}$. the excurrent apertures open into a circular chamber fined with sand which appears to be an invagination in the surface of the colony.

In Polyclinidae a high degree of organisation into cloacal systems is schieved. These systems range from simple circles of zooids around circular chambers with a central cloacal aperture to rows of zooids arranged along each side of branching canals which converge to a cloacal aperture. Sometimes partitioris of zooid-Free test occur between adjacent systems, or between parts of the same system (i.e. between cunverging canals); but in other species the systems are erowded together. In preserved or coniracted colonies, zooid-free areas of test, being solid and without cloacal cavities or chambers containing zooids, are prominent and usually protrude from the surface. This is an artefact, for in living, extended specimens, the cavities and zooids are expanded and the surface over them is not depressod.

In Polyclinidae there are relatively few taxa (compared with Holozoidae) in which the colony is a single system (e.g. Aplidiam australiense, Polyclinum orbitum n, sp.). More offen colonies, even those with large, regolar, citcular systems are relatively irregular, and contain a number of cloacal systems, each with a conspicuous cloacal aperture. The systems have the capacity to subdivide forming relatively large, buiky colonies. Despite the capacity of Polyclinidae 10 form large colonies of one or more systems, the cloacal cavities themselves are relatively narnow camals and small, rounded chambers rather than the extensive 3-dimensional cavities of Didemnidae.

The strength and rigidity of the test, especially when this is firm and gelatinous, or contains embedded sand and/or calcareous particles contributes to the maintenance of colony shape including surface features such as ridges and grooves that affect the
organisms' interactions with the environment (such as direction of current flow: Kott 1989). The pressure of excurrent water in the common cloacal cavity (when one is present) also contributes to maintenance of the shape and the configuration of the surface, of the colony. Thus, both factors contribating to the strength and rigidity of the test (sich as embedded sand), and also to the turgidity of a large, 3 -dimensional cloacal cavity (such as eflicient replication increasing the number of zooids contributing to the internal pressure within the cloacal cavities). constitute adaptive adyantages favoring the evolution of large, 3-4imensional colonies.

In some species of Polyclinum, the surface test hass a thin, britue layer of sand but the internal test is soft. In this case their round colony shape may be maintained by the water pressure in the large pharynges of the crowded zooids rather than the britteness of the surface layer of test, (See also apertures, colonial systems, colonies).
colonial systems: In ofher taxa with independentiy opening atrial apertures, the zooids are not embedded in common test; or are arranged in colonial systems other than cloacal ones; or, rarely, do not have any obvious systematicarrangement in the colony, Monnionus and Euhendmania zooids either ane solitnry; or separate from one another, attached to common test or stolons only at their posterior end, and, like separate Diazonidae. Clavelinidae, and PycnoclavelTidae, function as solitary individuals and do not form systems of any kind. As with cloaeal systems, other sorts of systems have zooids so arranged to ensure that the fusctioning of the whole colony exceeds the efficiency of the sum of is component zoonds.

Although zooids of Ritrerella compacta n.sp, R. sormuda $\mathrm{n} . \mathrm{Sp}$. and R popillara n.sp. are in circular rudimentary cloacal systems with their alrial aperpares in the centre, R, asymmetrica, R. pedunculato, R. mulristigmata n.sp, and Condominium gen nov. have their zooids arranged around fan-shaped stalked colonies, with the branctial and atrial apertares on apposite sides of the colony margin. Incurrent and excurrent streams, respectively, reinforce one snother, and are kept apart, and the long narrow staiksenable the colony to change its orientation with the prevailing currents.

Stalked Pseludodistoma with all atrial apertures directed to the top of the cotony and the branchial apertures directed downwards towards the point of attachment are equally flexible with regard to changes in cument flow. Other benefits from this uniform arrangement of apertires include protection of the open incurrem apertures from falling sediments (Kout 1989; see also apertures, cloacal systems).
colonies: The size and form of colonies reflects their plyylogeny, Loughoess of test and amount and type of embedded material. More primitive families such as Diazonidace, Clavelinidae and Pycnoclavellidac, do not usually form particularly large self-supporting colonies. However, generally othet aphousobtanch
families have firm and gelatinous test, resembling the test of phlcbobranch families in consistency; or it is strengthened externally or throughout with sand or other hard (including calcareous) particles. When strengthened, large often complex self-supporting colonies are formed. Oceasionally species such as Pseudodistoma fragile and P. gracilum with particularly soft almost fluid test also have relatively large colonies, possibly oceupying sheltered habitats.
The complexity of colonies of the Ascidiacea is most evident in colonies in which the embedded sand makes the test hard, brittle and allows it to form massive 3 -dimensional branching colonics (c.g. A. solidum); or in intricate colonial systems (e.g. A. crateriferum, Condominum areolaum n.gen., n.sp.) However, although complexity in shapc appears to require sand or other inclusions in the test, the size of colonies per se is not related to sand inclusions (c.g. gelatinous colonies of Polycitor and Aplidium become as large as some of the sand-strengthened colonies in these genera).
As well as affecting the size and form of the colonies, the consistency of the test, which is directly affected by the type and quantity of material embedded in it affects the configuration of the surface test, which, in turn, can modify the currents flowing over the colony and influence its interactions with the environment. In many Ritterella spp. and in Monniomus a layer of brittle sand-embedded surface test protects the incurrent and cxcurrent apertures and separatcs the currents flowing through them. In Polyclinidae the operation of the colony is enhanced by its ability to sort sand and to detcrmine precisely its distribution. For instance, in Aplidium tabascum n .sp. a single line of fine sand particles outlincs the margins of the firm zooid frec arcas that protect the branchial apertures; and in A. caelestis and A. macrolobaum n.sp. fine sand particles are embedded in the thin, flexible test over cloacal cavities, while coarser grains are in the rigid test between the systems.
Colony size and shape does not appear affected by the development of cloacal systems, except that colonies consisting of a single system are a finite size and shape (e.g. Aplidium altarium n.sp.) and gencrally are smaller and more regular than those with multiple systems.

Environmental pressures such as substrate and current flow probably have most influence on the size and shape of the colonies found in any habitat. Thus stalked species appear to occupy habitats where surge altcrnates the direction of water flow past the zooids; and large spherical, oval, or irregular colonies occupy sca floor habitats at depths where strong currents are not likely to dislodge them from substrates.
Extensive areas of sandy substrate favour large mixed populations of Monniotus radiatus n.sp., Dumus areniferus, Ritterella pedunculata, R. asymmetrica, and R. papillata n.sp., which all have similar finc, sandy, finger-likc colonies embedded in sand

- the individuals being more or less held together and stabilised by the sand that aceumulates around them (see Kott 1989); and, at the same time, they stabilise the sand. As wcll as these narrow stalked colonies with hair-like test projections and basal stolons that form sandy aggregates and mats in and over the substrate (e.g. Pycnoclavella spp.: Kott 1990, Rifterella spp., Monniolus spp.), there are other types of colonies that stabilise sandy substrates and protect them from crosion. Thesc are colonies with basal test forming root-like projections that hold them firmly in the substratc (c.g. Aplidium geminatumn.sp.), and colonics embedded in the substrate and forming 3 -dimensional reticula and branching lamellae (c.g. Aplidium acroporum n.sp., A. petrosum n.sp., A. solidum, and Polyclinum terranum n.sp.). (Sce also cloacal cavities, colonial systems). descending limb (of gut loop): see gut
dorsal lamina, - languets: No continuous fold occurs along the mid-dorsal line of the pharynx in Aplousobranchia as in some Stolidobranchia and Phlebobranchia. Instead pointed languets arise from the transverse vessels to the left of the mid-line, and curve over to the right. These channcl the mucous food cord (gathered from the sheets moving dorsally over each side of the pharynx) as it moves posteriorly to the oesophagus.
duodenum: see gut.
epidermal ampullae: see ampullae.
epidermal vesicles: sec vesicles.
excurrent aperture: scc apertures.
fertilisation: About half the extant Ascidiacea are solitary species which, with fcw exceptions (sec below), are externally fertilised. The other half are colonial, and these, with the exception of the Diazonidae, are fertilised internally. The colonial specics are predominantly Aplousobranchia, although taxa of Phlebobranchia (Perophoridae) and Stolidobranchia (Botryllinae and Polyzoinae) are included. Solitary species are predominantly Stolidobranchia and Phlebobranchia, only 2 genera of Aplousobranchia (Ciona and Rhopalaea) being included.

With the exception of Polycarpa and some Molgulidae and Agnesiidae, solitary Ascidiacea have long and relatively few male and female gonads, and their ducts open together near the anus, at the base of the atrial siphon. Relcased gametes thus are ejected, and presumably dispersed with the excurrent ciliary strcam. Gamctcs also are rcleased in the exeurrent water as the animal rythmically squirts to irrigate the atrial and branchial cavities. In both cases wastc products and gamctes arc projected wcll away from the animal where they are not likely to contaminate the incurrent stream (see Hoshino et al. 1986, Kott 1989b).
If both male and female gametes of the same mature individual are relcased together there would be opportunities for self-fertilisation. However there is growing evidence that individuals are generally self-sterile (Santis and Pinto 1991, Fuke 1983, Kawamura et al. 1987, Cloney 1990, Litscher and

Honegger 1991). Further, species are not necessarily functional hermaphrodites, and may be either protandrous or protogynous. Other mechanisms may exist to prevent self-fertilisation, one being the possibility that ejected sperm are dispersed furtheraway than ova.
The stimulus for release of gametes is not understood, although their are obvious advantages for one to exist. Under certain conditions light is known to trigger gamete release. Carlisle (1951) proposed that Ciona intestinalis released gametes and stopped seereting mucus from the endostyle in response to the presence of a gamete of the same species in the incurrent feeding stream. Althougft it is an apparent advantage for mucus secretion to stop when fertilisation is intemal, it is not for externally fertilised species.
In Polycarpa, short gonads and their ducts are scattered over the body wall, and the openings of the ducts are removed from the atrial aperture. Presumably this results in longer retention of gametes of both sexes in the alrial cavily than would be the case if they were released at the base of the atrial siphon. In certain species (P. intonuta, P. linctor, P, tinctorella: see Kott 1985) even longer retention resuls from the ventral orientation of the short gonoducts. and indeed these species are internally fertilised and embryos are brooded in the atrial cavity. Certain molgulid species are analgous to Polycarpa in respect to the arrangement of their male and female gonoducts, and also are internally fertilised, brooding, species. They all have the oviducal apertures turned ventrally, and the openings of the vas deferens distant from the alrial aperture, Molgufa calvata and M. manfrattensis (scc Kott 1985) have short, multiple openings of the sperri duct along the length of the ovary; and M, ellistoni, M, sahulosa and Eugyra spr, (see Kott 1985) have a short vas deferens, at the proximal end of the avary, turned ventrally. Although the reproductive strategy of Adagnesio spp. is not known, both gonoducts are furned ventrally (see Kott 1985) and probably embryos are brooded internally, Only one species of the Pyuridae, Pyura littoralis (see Kott 1985), has short female ducts while retaining a long vas deferens. This may be an adaptation for internal lertilisation, atthough embryos have not yet been found in the atrial cavity.
It is not known if these internally fertilised solitary species are self-sterile or not. If they are, the reasons for the adaptations found in the majority of these species, which apparently ensure the retention of sperm as well as ova in the atrial cavity, are difficult to understand. Forther, if they are self-sterile, it is possible that macus secretion is interrapted to allow sperm for cross fertilisabion to reach the atrial cavity through the pharynk. In Ecceinascidia turbinata, at least, it appears not to be drawn in through the atrial apertore with relaxation of body muscles following contraction and squiring (Ryland pers. comm.).

Whereas only relorively fow solitary species have evolved devices for uternal fertilisation, this strat-
egy is universal in colonial species, and once it has evolved it appears never to be Joss. The family Diazonidac, which contains some geners retaining a solilary hahit, and the related and supposedily primitive solitary Cionidac are the only aplousobranch taxa externally pertilised.
In colonial internally fertilised species (as in solitary ones) the position of each goroduct relative to the others and to the atrial aperture probably is related to patterns of gamete release and fertlisation. Although the oviduct is often displaced when it acts as a brools pouch, the vas deferens and anus of colonial species open together, usually part of the way up the thorax, ant not necessarily close to the atrial aperture. The atrial cavity, although it is often distended with embryos, hever contains faeces oatside the rectum, and presumably faecal pellets are released by the contraction of the body wall muscles, whieh irtigates the atrial cavity and brings the anous close to the alrial aperture, Since the opening of the vas deferens is associated with the anos it is pussihle that gametes are also released in this way. In bolozoid genera with cloacal systems, and in the Didemnidae, large atrial apertures often expose anal and gonoducal openings direetly to the cloacal cavity. This also happens in some Polyclinidae (Aplidium, Synoicum and a few Polyclinumt). Thus, the opening of the male duct of cofonial, interoally fertilised species (as in solitary extemally fertilised ones) is usually positound where sperm released from it are most likely to be expelled to the exteriot, either directly of through the cloacal cavity, rather than being retained in the atrial cavity for self-fertilisation. It is not known whether or not embedded colonial zoolds bave a pattern of sythmic squirting, like solitary and independent colonial ones, to increase means by which sperim might be released.
Further, colonial, like solitary. species have been shown to be self-sterile (e.g. Diplosoma listerianum: Ryland and Bishop 1990; Botryllus schlossert: Sabbadin 1979). In addition to the growing evidence of cytological and chemical mechanisms for self-sterility, the existence of functionally gonochoric colonies in the genus Syzotou (see Kott 1990), and of sequentially hermaphroditic colonics in many other taxa, support the view that colonial, as well as solitary, ascidians are not generally sclf-ferilised. Sabbadin (1979) reports a protagynous condition for BolrylIus. Furthet evidence of protandry or protogyay exists when embryos but not mature male gomads are presenk and when there are mature mate gonads but no embryos suggesting that the male gonnds mature either hefore or after the female ones (see below).
IF; as the evidence suggests, intematly fertilised colonial spocies, ate not self-fertilised, sufficient concentrations of sperm tnust reach the atrial cavity from gutside the zooid For some to enter the oviduct, and move to the fertilisation chamber (the brood pouch. or the proximal end or top of the oviduct, or the atrial cavity) at the time that oocyuss reach maturity. Thus it is probable that advantages associater with the
synchronous release of gametes are as great in internatly fertilised colonial species as they are in externally fertilised solitary oncs, especially as colontal zooids are small, with relatively small ovaries, few ova and often ephemeral gonads. Again, little is known of mechanisms triggeting suck a synchrobous release. Further it is not known bow sperm enters the atrial cavity, Ryland (pers. comm.) found that external material was not drawn into the atrial cavity of Ecreinascidia lurbintafa following its partial evacuation by squirting. It is not kown whelher or not cmbedded zooids do squirt, however even if they do it seems unlikely that sperm could enter wooids through common cloacal chambers against the direstion of the ciliary clurrent. Even in independently opening zobids it is unlikely that it would enter direetly through the atrial aperture. The altemative hypothesis is that the process reported by Carlisle (1951) for Cionta intessinalis is present in colonial species viz. That mucus secretion is interrupted so that sperm entering the pharynx can pass through the stigmata into the atrial cavity, thence into the oviduct

The only colonial, intemally fertilised families which seem to be analogous with Polycarpa, Molgula, Eugyra and Adagnesia speciés (with short, and ventrally directed vas deferens suggesting retention of sperm in the atrial cavity) are Pyenoclavellidac and Euherdmaniidae, with the gonoducal and anal openings at the base of the atrial cavity Possibly these families also have mechanisms to prevent selffertilisation.

The relatively large size of the testis in relation to the ovanes in most colonial species indirectly supports the view that generally cross- rather than selffertilisation is likely. Otherwise the production of a large amount of sperm for the fertilisation of few oocytes within the same zoold in colonial species would not be economic. Farther, it is difficult to entertain an hypothesis that the well established mechanisms ensuring self-sterility reportedun Cionidae (see Kawamura et al. 1987, Cloney 1990, de Santis and Pinto 1991), Ascidididae (Litscher and Honegger 1991) and Pyuridae (Fuke 1983) are exceptions from a general condition; especially when sclection for short-lived free-swimming, viviparous laryae occurring simultaneously (see Kolt 1974, 1982) results in the maintenance of crowded populations with maximal opportunities for gene exchange. (See also incubation of embryos).
gasiric folds: see gut.
gastro-intestinal ghand! see gut.
gonsads: unlike the families discussed in Part 2 (Kott 1990) in which they are in the gut loop, the testis follicles and small ovary of most of the familics discussed below are in at posterior abdomen behind the gut loop. The exceptions are some Euherdmania (E. dikifota, E., dentatosiphonis, E. translucidan.sp.) in which they sometimes are in the gut loop. and Sidncioides in which the ovary is in the thorax. In Protopolyclinidae n.fam., Polyclinum and Aplidiongsis the testis follicles are bunched togeiher in a sac-
like posterior abdomen separated from the abdomen by a narrow neck with the small ovary surrounded by the testis follieles. Int Sidureioides a similar saclike posterior abdomen contains the male follicles, bat the ovary is halfway up the thorax, with a short oviduct opening directly into the atrial cavity.

In other taxa (Euherdmania, Ritterella, Aplidionn, Synoicrem, Marchelfiam) there is no constriction between abdomen and posterior abdomen. The lestis follicles in these taxa either are bunched together in a short, thick posterior abdomen, or arranged in one or two longitudinal series in a sometimes thrend-like posterior abdomen which is many times the length of the rest of the zooid, In many species of Pseudodistomide B.fam. gonads seem intermediate between those with testis follicles bunched behind the ovary, and those with testis follicles in a longitudinal serics in the posterior abdomen. In most known species of this lamily the male follicles are bunched together around the ovary in a small part of a long thrend-like posteriot abdomen. In specimens of Pseudodistoma fandens: n.sp, the vas deferens, distended with sperm, is seen to originate at a point level with the ovary, about halfway down the cluster of male follicles. as if the gonads had tumed onto their side to fit info the thin posterior abdomen. Pretudodistomen gradium n.sp. and Synolctom aropogaster have a similar arrangement of male 「ollicles.

In genera with male follicles in 7ongitudinal series the ovary is invariably anterior to them and the vas deferens is joined by short vasa eflerentia as it extends up the side of the posterior abdomen. When 2 series of testis follicles are present the vasaiefferentia alternate between the rows. Male follicles are in a single series when a second is not developed. This appears to be an ephemeral condition and does not constitute a genetic difference. Male follicles arranged in longitudinal series can appear bunched when they are drawn togetber with contraction of the long posterior abdomini, However, in certain species (Aplidium alrarium, Aplidium utevere) the testis follicles are actually bunched, with short vasa efferentia joining them to a relatively short vas deferens, in a short posterior abdomen.

The ovary is always small in these families, producing relatively few eggs for internal fertilisation and brooding. Testes, however, are relatively large, but always composed of numerous separate follicles father than a large single one, as in most taxa of the Ascidiacea. Large, undivided testes are present only in some Perophora spp, and in some Polyzoinae (sec Kott 1985; see also fertilisation).
gonoducal openings, gonoducts; see fertlisation.
gut, gut loop: Distal to the large pharynx, the gut of aplousohranch ascidians always forms a simple, narrow and usually vertical U-shaped loop, which oceupies the length of the abdomen. In the present group of families (characterised by the presence of the gonads behind the gut loop in a posterior abdomen). the tange of variations resembles those found in those aplousobranch families in which the gonads
are enclosed in the gut loop (see Kout 1990). These variations are:
1.The length of the oesophagus. In Euherdmaniidac this is long, as it is in Pyonnclavellidae and Polycitoridac and to some extent in Clavelinidae, with the stomach in the posterior end of a long abdomen. The oesophagus is telatively shorl, with the stomach halfway down the abdomen, in Protopolyclinidae n.fam., Ritterellidae n.fam. and Polyclinidae (as it is in Holozoidae and some Clavelinidae). In Pseudodistomidae n.fam. (as in Diazonidae) the ocsophagus is of various lengths, sometimes being moderately long. It is almost twice the length of the post-pyloric part of the gut loop in Pseudodistoma auream and even longer in Anadistoma n.gen, Occasionally a prestomach enlargement is in the ocsophagus, as in Aplidium altarium. The only other genus in which this is known is Clavelina (C, moluccensis, C. cylindrica: Kot 1990),
2.The orientation of the stomach. This usually is oblique to the long axis of the zooid, with the oesophagus curving ventrally to enter the cardiac end of an asymmetrical stomach with a short dorsal border and s long curved ventral border. Only in Aplidium, Morchellium, and in some species of Rillerella is the ocsophagus straight, entering the cardiac end of a more or less radially symmetrical, vertical barctshaped stomach.
In Polyclinum and Sidneioides the gut loop usually is horizontal, and slightly wisted, the right or descending limb moving around to lic above the uscending bomb, and the posterior end of the loop curving dorsally. The horizontal orientation of the gut loop is reminiscent of Cionidae, and Holozoidae (Sycozoa, Distaplia),
3-Post-pylotic subdivisions of the gut. These consist of a wide duodenum immediately behind the stomach, and a narrow mid-intestine that expands into a large oval, posterior stomach about halfway along its length. There is thus a proximal (post-pyloric) part of the mid-intestine, as well as a distal (pre-rectal part). This urrangment is found in most other aplousobranch families (sec Kot1 1990). Only very rarely is there a departure from this pattern - viz. in Pseudodistomidac n fam. the proximal part of the mid-intextine is wider than usual and is more or less continuous with the duodenum, an external crease marking their junction.
Pockets in the proximal end of the rectum on each side of its junction with the distal section of the mid-intestine form a rectal valve in many species of aplousobranch, especially Ritterella. Aplidium. Aplidiopsis, Synoicum, Polyclinum.

It is possible there are some iniraspecilic variations in the development of this valve and its appearance is alfected by artelacts of preservation and gut contents. It is associated with the long, straighl, vertical ascending limb of the gut loop in these families of the Aplousobranchia.
4.The stomnch wall is either smootr, both inside anel out, internupted only by a typhlosole (or suture line)
along the dorsal border; or it is folded; or as in Syoicum, Morchelfium and Aplidiopsis, its intermal lining is raised into circular or irregular glandular areas, and the external surface may also be raised into nulberry-like swellings.
In Pseudodisroma the short, wide stomach is partrally divided into 4 shallow. longitudinal compartments, Aplidium species, with relatively small zooids and narrow short stomachs, have a relatively large glandular area achieved by longitudinal folding of the stomach wall into from 5 to 30 often deep folds Euherdmania, Monnionus and Ritterella have similar, though not so numerous longitudinal folds in the stomach wall.
5.A gastro-intestinal gland, with a duct litom the pyloric end of the stomach breaking into branches around the ascending limb of the gut, probably always is present in all families of A plousobranchia, although it is usually conspicuous only in Polycitoridac, and has a storage vesicle only in some Holozoidse.
head: The expanded terminal liree end of stalked solitary and colonial ascidians is termed the head. It accommodates the thoraces, which, whes expanded are the widest part of the zooid or individual, and colony and zooid openings are on its surface. The barrow abdomina and posterior abdomina are in the stalk.
heart: The heart is a delicate curved tube in the postetior end of the posterior abdomen in most of the genera discussed below. The exception is Placerttela, the monotypic genus from the north-westerm Pacilfie, which has its heart in the abdomen, presumably retained there in a primitive position while the gonisds spill back behind the gut loop (see Nishikuwa 1984b).
incubation of embryos: all families discussed in the present work are internally Fertilised and embryos, brooded intenally by the parental zooids, are released as tailed larvae. The process of replication is well developed. Zooids as is consequence are small and simplificd, but numerous (see Kott 1990), Thus, despite the fact that in most cases the embryos are relatively small ($<1 \mathrm{~mm}$) and yolky, few are produced and incubated at a time by any one zooid. The number of larvac being produced by the whole colony is maintained by the large numbers of zooids producing few embryos, rather than lew zooids producing a large number.

Larger embryos are found in Euherinannia, In this genus eggs are fertifised at the base of the ovidact and are incubated in the oviduct as they move up the long abdomen, as in the possibly related Pyenoclavellidac (sce Kolt 1990). Relalively Jarge embryos are also produecd in Psendodistoma in which the eggs of same species appear to be fertilised and incubated. usually one at a time in a brood pouch constricted off from the posterodorsal comer of the thorax.

In most of the other taxa diseussed below, eggs are fertilised, and the relalively small embryos are incubated in the atrial cavity. Only in Polychimim, which has zooids with large roomy atral cavities, do the

Adhasive organs (arrangement) Vesicies		Triradial	Median finear			
		No vesioles	No vesicles	With vesicles (except in some simplutied Polyctinidae)		
				Vesicles separale from palred postero-ventral, dorsal, and sometimes anterior epidermal stiands	Vesicles separate from paired ventral and dorsal epldermal strands	Vesicles separate directly Irom epidermis along lateral, and sometimes, median lines
		Pyenociavellidae Sigllina mjobergi Euherdmanildae				
			Psoudoristomidae			
		Cavelinidae	Sigilina Hypodistome Eudisfoma Polycitorella			
		Holozoidae (except: Sigilina Hypodistome)	Poivctior Cystodytes	Protapolyclinidae		
				Ritterailldaza (not aequalisiphonis group) Polyelinum. Symocurn spp.	Synoicurn spp. Aplidium hunecratum Aplidium muthilinaatum Aplidium omatum Aplidium protectans Apliafum robusfum Aplidium labescum	Ritterella spp. (? aequalisiphonis group) Synoicum spp. Aplidium spp.

TABLE 2. Summary of epidermal elements at anterior end of larval trunk in aplousobranch families.
particularly small embryos (larval trunk seldom more than 0.6 mm long) appear not to occlude the pharynx, even when relatively large numbers are present at a time (up to 12 embryos: P. fungosum). Nevertheless, it is in this genus that a brood pouch sometimes is present (P. marsupiale, P. Isutsuii, P. terramum n.sp.) constrieted off from the body wall in a unique position, about halfway along the dorsum of the thorax at the level of the anus. It is most probable that fertilisation as well as incubation of embryos, takes place in it; or in the atrial cavity.

Only very few Aplidium species (A. uteute, A. altarium) have a brood pouch, at the postero-dorsal comer of the atrial cavity, in which embryos are incubated. In
this genus, fertilisation generally appears to be in the top of the oviduct or in the atrial eavity.
incurrent aperture: sec apertures.
larvae: The larvae of the taxa formerly grouped in the single family Polyelinidae, as originally defined, demonstrate its polyphyletic nature. The larvae of the new families proposed below can be characterised by their size, adhesive organs, ectodermal vesieles and ectodermal ampullae (see Table 2). The Euherdmaniidae have adhesive organs that are invaginated tubes that evaginate on settlement, as in the family Pycnoclavellidae; the relatively large larvae of Pseudodistomidae n.fam., as do Polycitoridae, have large adhesive organs and ectodermal ampullae be-
twecn and lateral to the median adhesive organs; the gencrally smaller larvae of Polyclinidae emend., Protopolyclinidae n.fam., and Ritterellidae n.fam. usually have eetodermal vesieles which separate off from the larval epidermis into the test between and alongside the median adhesive organs. There are also differences between genera in the origin of the ectodermal vesieles (see vesieles below).
All the larvae of the families discussed below have a diseretc mass of yolk cells in the middle of the trunk. Larval ocellus and otolith are present in all genera. Although Euherdmonia has similar adhesive organs to Pycnoclavella, the larvae do not appear to have a tendency to loss of the ocellus as do those of Pycnoclavella.

With the exception only of Euherdmania in which the invaginated tubes arc triradially arranged, the 3 adhesive organs are in the anierior median line. Only Aplidium triggsense (with 12), and A. multipapillatum Millar, 1975 (with 8), have a different number of adhesive organs, all in the median line.
muscles: With the exccption of sphincter muscles around the apertures, the body museulature in the parietal body wall is usually longitudinal, although fibres are exchanged with adjacent bundles. Transverse fibres are present, forming a network with the longitudinal ones, only in Ritterella multistigmata n.sp. and Anadistoma n.gen. These transverse fibres may originate as branches from the longitudinal musele bands. Also in Ritrerella, oblique museles similar to those in the Clavelinidae cross the thorax from the endostyle to the postero-dorsal corner of the thorax. Longitudinal and oblique museles extend in a band along each side of the abdomen and posterior abdomen, as they do in most of the genera. Only some Aplidiopsis species, Polyclinum and Sidneioides are exceptions with short longitudinal muscles confined to the antcrior part of the thorax.

In some Pseudodistomidae n.fam. (P. oriens n.sp., P. candens n.sp) at least some fibres of the longitudinal museles extend along a vascular stolon posterior to the posterior abdomen and heart. The presence of thesc museles on the long, distinct vascular stolon is reminiscent of Sigillina (Holozoidae, sec Kott 1990). The presence of both a gonad-containing postcrior abdomen, and a vascular stolon with muscles (apparently homologous with a similar organ in Sigillina) in certain Pseudodistoma species suggests that the vaseulas stolon of Holozoidae is a separate structure rather than being homologous with the posterior abdomen of Polyclinidae, Ritterellidae n.fam., Pseudodistomidae n.fam. and Protopolyelinidae n.fam.

In all taxa, transverse fibres are present in the transverse vesscls. These are fibres that derive from longitudinal muscle bands. These museles are seen clearly in the large zooids of Synoicum castellatum n.sp., branching off longitudinal muscles and entering the transverse vessels through connectives from the parictal body wall about one-third of their length
from the dorsal mid-line. Ventrally they divide into branehes each side of the endostyle.

The large atrial lips of Polyclinum and speeies of other genera in Polyelinidae are also muscular. Branches from the ventral thoracic longitudinal muscles extend out into these tongues, and circular museles from around the atrial apertures also are diverted out along them. These large atrial lips insert into the test to protect the atrial openings into the cloacal cavities, and in some eases, insert into the rim of common cloacal apertures and exert some control over these excurrent openings.
Anteriorly, the longitudinal muscle bands extend onto the siphons, where there is exehange of fibres with circular (ineluding sphincter) muscles, longitudinal fibres are then organised into bands, one extending into the each lobe around the rim of the aperture. When thesc muscles arc concentrated into the tip of cach lobe they depress it and divide the tip of the lobe into 2 (e.g. Ritterella dispar, Aplidium macrolobatum n.sp.).
parastigmatic vessels: see branchial sac.
posterior abdomen: see gonads.
replication: In these well devcloped aplousobraneh families replieation takes place by horizontal division of the posterior abdomen and/or the abdomen, and usually is prolific. The process has not been specifically studied in Australian species. However the proeess is similar in the range of polyclinid speeies studied by Berrill (see 1935 for review), Nakauchi (1966-1987), and Nakauchi and Kawamura (1974a-1986). The proeess is the same in Ritterella (see Nakauchi 1977).
Generally reserve food cells (trophocytes) pack the abdomen and postcrior abdomen. Sometimes the thorax and abdominal organs are resorbed but in other species they remain functional during the budding process (see Ritterella pulchra: Nakauchi, 1977). The abdomen and/or posterior abdomen are then divided, by constriction of the epidcrmis, into numerous buds. A segment of epicardial tube is contained in each, and is the regencrative tissuc for the new vegetative zooid which devclops from cach bud.
In Polyclinum vegetative zooids with relatively long strap-like vegetative posterior abdomina (as opposed to the short sac-like posterior abdomen of sexual zooids) are found crowded in the growing margins of colonies (see P. vasculosum).

Although moderately long, sometimes branched, vascular appendiees are present in Ritterellidae, and shorter ones are present in most of the other families, these seem not to be involved in the proeess of replication as they are in Holozoidae.
Pscudodistomidae n.fam. have a long vascular stolon with longitudinal body muscles extending along it as in Sigillina (Holozoidae). This supports the view that this family is related to Sigillina (Holozoidae). The method of replieation in the Pseudodistomidae n.fam. is not known, nor is it known that the vascular appendix has a role in the process. Although Brewin (1958) found 'bud-like masses' lying be-
neath the zooids of P. cerearm, and juvenile replicate zooids are found in the stalk of developing lobes of P. oriens n.sp., it is not known whether these developed from the vascular stolon in a process that resembles that of Holozoidae (see Kott 1990); or if they developed from the posterior abdomen and/or abdomen of the parental zooids by horizontal strobilation, as in Polyclinidae. A continuation of the epicardial tube into the vascular stolon of Pseudodistoma has not been found.
stonaach: soe guil.
test: see cloacal systems, colonial systems, colonies.
trophocytes see replication.
vascular appendix. - process, - stolon: see replication.
vesicles, ampullary - , epidermal - , larval - Hollow spheres, about 0.01 to 0.05 mm dameter with an epithelial wall, usually occur in the test of the larval trank in Protopolyclinidac, Ritterellidae and Polychinidae. The fine strands attaching them to the larval epidermis sometimes sever as larvae mature. Like the enlarged epithelial cells on the tips of some ampullae, the epidermal cells occasionally are larger on the outside surface of the vesicle than on its mesial wall.
\ln Monniotus (Protopolyclinidac), Polyclinima and Synoicum, the vesicles exclusively branch off fine strands that detach from the epithelial wall on each side of the mid-line and trail through the test. The ventral strands arise from about one half to twothirds of the way from the anterior end of the trupk one extending to the posterior end of the trunk near the posterior-horns of the haemococlic cavity where the vesicles form a tight cluster, and another shorter one trails anteriorly. Similar pairs of epithelial strands from the anterior end of the dorsal surface trail posteriorly on each side of the dorsal mid-line to the vicinity of the branchial apertare, and in Momnioths a corresponding pair of strands extend anteroventrally on each side of the adhesive organs. The vesicles are especially numerous postero-ventrally. Dorsal and ventral clasters of vesicles arising from similar test strands are present in some larvas of Aplidiam (A. Innacratum nom. nov. A. miltilíneaLum n.sp., A. omatum nisp., A. protectans n.sp, A. robwsium n.sp. and A. inbascum n.sp), but the pos-tero-ventral test strand is much shorter and a postero. ventral eluster of vesicles near the base of the tail does not occur. Larvae of the majority of Aplidiam species have vesicles direclly atiached by their short sometimes branched hair-like filaneent to the larval epidermis rather than to an epithclial strand trailing through the test. These vesicles are arranged in single or multiple series to form a lateral aro around the anterior end of the larval trunk on each side of the lateral line, and sometimes also in the modian line between the adhesive organs (Table 2).
The enlarged epithelial cells on the cutside of the vesicles suggest that they may be involved with adhesion to the substrate,
Vesicles are not present in the larvae of Clavelimidae, Holozoidae, Polycitoridae, Pycooclavelladae, Euherdmaniidae and Pseudodistomidae n,fam.

Fanily POLYCLINIDAE sensu Milne Edwards, 1842

Polyclinidae Milne Edwards, 1842 is distinguished from other aplousobranch families by the presence of gonads and heart in a posterior abdomen which also serves as the vegetative stolon. Genera of Diazonidae, in which gonads and hear! are sometimes in a posterior abdomen, have internal longitudinal branchial vessels to distinguish them. Certain species of Holozoidae have gonads in a posterior abdominal sac but it is separate from the vegetative stolon (sce Kott 1990), the holozoid heart is in the abdomen (rather than the posterior abdomen), and the larvae usually have adhesive organs triradially arranged (rather than in the median line). Certain species of Euherdmania, formerly assigned to Polyclinidae, have no posterior abdomen and, with the gonads and heart in the abdomen, can be mistaken for Polycitor. Larval characters must then be relied on to distinguish them (see below, Euherdmanídae).
Like Polycitoridae, the present group of families have longitudinal and oblique muscle bands that extend from the thorax along the length of the zooid. Also, transverse muscle fibres are in the transverse branchial vessels, However, usually they lack the thoracic bands that form an external coat in the parietal body wall of Polycitoridae. Exceptions, in which transverse muscle bands are present in the parietal body wall to form a meshwork with the longitudinal ones, are CondominLium n.gen., Ritterella multistiginata n.sp., Anadistoman.gen and Euherdmania fasciculata Monniot, 1983.
Taxa in Polyclinidae were assigned to one of 2 subfamilies, Euberdmaniinae and Polyclininae, grouped on the basis of shared convergent characters. Thus, Protopobyclinum, Euherdinania, Dumus, Ritterella, Placentela, Pseudodistoma, Monniotus, Ciforclinum and their synonyms which lack cloacal systems comprised Euherdmaniinae: and Polyclinnm, Aplidion, Syooicum, Sidnyum, Aplidiopstis ard Morchellium which all have cloacal systems were in Polyclininae. However, considerations of larval and adult morphology (set out below) suggest other family groupings (Tables 1,2) that more closely reflect their probable phylogeny, and acknowledge closer relationships with other taxa of Aplousobranchia than those with genera formerly included in the polyphyletic Polyclinidae as defined by Milne Edwards (1842) and subsequent authors (see Berrill 1950),

In developing this new classification, the characters that have been relied on to indicate higher taxon relationships include the length of the oesophagus - a short oesophagus one- to twothirds the length of the abdomen as in Holozoidae, or a long oesophagus more than two-thirds of the Iength of the abdomen as in Polycitoridae; the presence or absence of structural folds in the stomach wall, and the shape and orientation of the stomach - whether it is vertical and barrelshaped or oblique and shortened dorsally; the size of the branchial sac, and number of rows of stigmata; the type of larval adhesive organs - eversible axial cones in shallow epidermal cups, or pycnoclavellid inverted, tubular ones; and the site of fertilisation and incubation of embryos, e,g in the distal (thoracic) part of the oviduct as in Diazonidae (see Protopolyclinidae n.fam., Ritterellidae n.fam.), or in the base (abdominal part) of the oviduct as in Pycnoclavellidae (see Pseudodistomidae n.fam. and Euherdmaniidae), or in the atrial cavity (see Polyclinidae), Generally, the presence of branchial papillae, long and numerous rows of stigmata, the anus opening well anteriorly, a large number of embryos, and bunched male follicles indicate more primitive taxa than those without branchial papillae, and with narrow thoraces, few rows of stigmata, and testis follicles in longitudinal series.
Most of the taxa in these families have well developed rectal caeca (a rectal valve) at the base of the ascending limb of the gut loop. This probably is an apomorphic character associated with the vertical gut loop. It is known also in Hypsistozoa, Neodistoma and in some Distaplia (see Kott 1990).
Of the following 6 families (which include all the genera formerly included in Polyclinidae), only the monotypic family Placentelidae n.fam. from the north-westem Pacific does not occur in Australia. In the other families, all reported from Australia, the only genera that do not occur here are Protopolyclinum Millar, 1960 (Protopolyclinidae n.fam.), Citorclinum Monniot and Millar, 1988 (Pseudodistomidae n.fam.), and Pharyngodictyon Herdman, 1886 (Ritterellidae n.fam.).

Key to families of the genera formerly comprising Polyclinidae Milne Edwards, I842

[^0]Airial apertures not 6 -lobed; cloacal systems well developed ... POLYCLINIDAE emend.
2. Sugmata in 3 rows
.....................................
Stigmata in >3 rows 3
3. Stomach at posterior end of long abdomen

EUHERDMANIDAE
Storsach near the middle of short abdomen . 4
4. Heart in the abdomen
.......................... PLACENTELIDAE n.fam.
Heart in the posterior abdomert 5
5. Posterior abdomen short, tapering, sometimes separated from abdomen by a constriction PROTOPOLYCLINIDAE n.fanl
Postcrior abdomen not short, tapering, nover a constriction between posterior abdomen and abdomen \qquad RITTERELLIDAEn.fam.

Family PLACENTELIDAE r.fam.

The monotypic family is characterised by its numerous rows (12 or more) of numerous stigmata (up to 50), relatively short oesophagus, smooth stomach, the anius at the top of the branchial sac (level with the second or thind row of stigmata), heart in the abdomen, numerous embryos being incubated in the terminal part of the oviduct in the atrial cavity, almost sessile median larval adhesive organs with an eversible axial cone in an epidermal cup, and 4 rows of stigmata in the larvae. The body muscles are longitudinal and oblique on the thorax and have not been observed on the abdomen or the posterior abdomen.
The type species of the genus Placentela, P. crystallina Redikorzev, 1913, has been well studied (Tokiaka 1968, Nishikawa 1984b). In the latter study Nishikawa examined the existing material (including types) of Placentela crystallina and its synonym Sigillinaria clavata. The species has embedded zooids and up to 60 eggs and developing cmbryes in what appears to be an intemal brood pouch in the distal end of the oviduct in the atrial cayity. The heart is in the abdomen with the anterior part of the gonads, while the remainder of the gonads and the epicardial sacs are in the posterior abdomen. Gonads spill over from the gut loop into the posterior abdominal extension as they do in Hypsistozou (see Kott 1990). There is parenchymous material in the posterior abdomen of P. crystallina, which

Nishikawa (1984b) believed would be the site for formation of replicate zooids.

Kott (1963) first proposed the synonymy of Sigillinaria clavata Oka, 1933 and Homoeodistoma michaelseni Redikorzev, 1927 with Placentela crystallina. All 3 are from the sea of Okhotsk and the Kamchatka Peninsula (morth-westem Pacific). Nishikawa (1984b) subsequently established the synonymy of S. clavata with P. crystallina, but did not include H. michaelseni in his study. The latter species as well as having the same general colony and zooid morphology (inclucing 12 tows of stigmata, and the anus and gonopores opening at the top of the branchial sac), is sympatric with P. crystalling and is here considered symonymous with it.

Species assigned to Sigillinaria: Brewin, 1950b (see also Brewin 1958) are not congeneric with Sigillintaria Oka (Placentela). They bave Iong or short oesophagus, folded or smooth stomach, 3 or more rows of stigmata and some have parastigmatic vessels. Subsequently Brewin (1958) on the basis of "parallebism in classification", reassigned species to genera solely on the presence or absence of stomach folds - those with stomach folds to the genus Pseudodistoma, and those without to Homoeodistoma. Thus S. arenosa Brewin, 1950 and S. novaeselandiae Brewin, 1950 were ermoneously assigned to Homoeodistoma (respectively Ritterella and Pseudodistoma, see below).

Homoeodistona longigona Tokioka, 1959 from the Sea of Japan (Wakasa Bay) differs from H. michaelseni (Placentela crystallina) in the position of the anus (opposite the sixth or seventh row of stigmata - in a pharynx with 20 rows). the position of the heart (at the end of the posterior abdomen), yellow pigment spots in the lobes of the apertures, and a long, narrow posterior abdomen with testis follicles and eggs in longitudinal series. Although a similar longitudinal series of ava is in the proximal end of the oviduct in Euherdmania, the long oesophagus of the latter genus is lacking. Millar's (1963) proposal that H. longigona is a diazonid may be correct (see Kott 1990, p.33); or it may be related to Ritterellidae (see R. arenasa below).

Holozoidae and Placentela (see Nishikawa 1984 b) have similar large larvae with well developed adult organs and almost sessile adhesive organs, zooids with short oesophagus, and gonads sometimes extending into the posterior abdomen which also contains an epicardial sac. However, in view of the primutive characters of Placentela, viz, numerous stigmata, the large
number of embryos being brooded, the large testis and the anterior position of the anus, a diazonid ancestor is more likely than a direct relationship.

Although sessile everting adhesive organs and fertilisation at the top of the oviduct occur in Clavelinidae they probably are characters convergent, rather than homologous, with those in Placentela. A relationship with Polycitoridae is unlikely in view of the large number of embryos, the relatively short oesophageal neck (the cardiac end of the stomach is about halfway down the abdomen), the anterior position of the anus, and the absence of transverse thoracic muscles.
The type species P. crystallina, and P. tranislucida Kott, 1969 from the Antarctic Peninsula are the only species known. The genus has not been recorded from Australian waters. Placentela areolata Kott, 1963, P. ellistoni Kott, 1972b and Honoeddistoma omasum Monniot, 1987 are incorrectly assigned (see Condominium n.gen, Protopolyclinidae r.fart. below).

Family PROTOPOLYCLINIDAE n.fam.

Zooids are embedded or separate, with both apertures 6 -lobed, the atrial apertures opening separately to the exterior. The pharynx is large, and stigmata are numerous, arranged in 9 or more rows, with or without parastigmatic vessels. Branchial papillae often are on the transverse vessels. The amus opens one third to hallway up the atrial cavity. The oesophagus is short, and curves ventrally to enter the dorsally shortened, obliquely oriented stomach about halfway down the relatively small abdomen. The stomach has (sometimes only faint) longitudinal ridges in Monniotus, but irregular ridges or a smooth stomach in the other genera. Gonads, in a broad tapering posterior abdomen (constricted off from the abdomen only in Protopolyclinum), consist of numerous bunched testis follicles and a smaller ovary anterior to the testis. Embryos are incubated in the distal end of the oviduct in the posterior part of the atrial cavity.
In the characteristically large thorax, short cesophagus, small abdomen, anterior position of the anus, tapering posterior abdomen, numerous bunched male follicles, and incubation of embryos in the distal part of the oviduct this family resembles Placentela (Placentelidae, see above), which, however, differs in having the heart in the abdomen. Further, the presence of branchial papillae, suggests an ongin direct from a diazonid ancestor.

The numerous small bunched testis follicles in a broad posterior abdomen, the occasional presence of branchial papillae, the dorsally shortened stomach, and the larval vesicles branching off posteriorly- and anteriorly-trailing stalks on each side of the dorsal and ventral mid-lines suggest a relationship with Polyclinum, although Monniotus, with shallow longitudinal stomach ridges, may have diverged from the main polyclinid line.

The Antarctic Tylobranchion Herdman 1886, has branchial papillae, short oesophagus and folded stomach, but its branchial papillae are forked and it has cionid-type larvae indicating a closer affinity with Diazonidae (see Kott 1990).

Ritterellidae n.fam., often with bratichial papilJae and larvae like the present family, are distinguished by their narrow zooids, usually with testis follicles in one or 2 longitudinal series and vertical barrel-shaped stomach.

The family, known only from Indo-West Pacifie and Australian temperate waters, contains 3 genera, viz. Condominium n.gen., Monniotus Millar, 1988 and Protopolyclinum Millar, 1960 (monotypic, known only from New Zealand).

Key to genera of Protopolyclinidae

1. Zooids embedded 2

Zooids not embedded Monniotus
2. Branchial papillac present; colonial systerns not present Protopolyctinum Branchial papillac not present; colonial system present Condominium ngen.

Genus Monniotus Millar, 1988

Type species: Monniotus ramosus Millar, 1988
Zooids are contained separately in the terminal branches of the narrow sandy stalks that comprise the colony. The test consists of a delicate membrane to which sand adheres making a firm brittle casing for the zooid which, when expanded, completely occupies the space inside and adheres closely to the inside of the sandy casing. Body muscles are longitudinal, extending the whole length of the zooid. Rows of stigmata are numerous (up to 10) and one or more branchial papillae are on the transverse vessels, and also on the parastigmatic vessels when these are present. The gut loop is short, and the stomach has only very faint intemal longitudinal ridges on the parietal
wall. The posterior abdomen is long with the small ovary in front of the bunched follicles of the large testis. The posterior abdomen is especially broad when testis follicles are mature. Testis follicles and embryos are never present at the same time, and the genus appears protandrous (see also Millar 1988). Fertilisation is in the distal part of the oviduct (in the thorax), where a longitudinal developmental series of up to 6 embryos at a time are found being incubated. The larval adhesive apparatus resembles that of Polyclinum, in the 3 median adhesive organs, epidermal vesicles branching off trailing epidernal strands, and median and lateral ampullae with columisar epithelial cells, similar to those in the adhesive organs, forming a cap on the tip as in Polyclinum. However, the adhesive organs themselves are deeper than those in the latter genus.
In all known species, the incurrent aperture opens in the centre of a transverse, curved strip of delicate, sand-free, test. The sand-strengthened lest anterior to the naked strip curves down over the aperture to form a protective lip.
Although a phylogenetic relationship is not implied, the colonies resemble those of Ritterella spp., especially those of R. cornuta which have narrow sandy lobes, regularly spaced branchial papillae and mumerous sows of stigmata Howcver, in Ritterella the zooids are organised into single cotonial (not usuallỳ cloacal) systems, while in Monmiotus they are separate from one another, one in each lobe of the colony, the lobes joined basally to common stolons. Colonies also resemble those of Euherdinania claviformis, having separate zooids in narrow, sandy stalks. Millar (1988) distinguished Monniotus from Euherdmania by its branchial papillae. However, these are variable, reduced to one per row in M. australis. A more reliable and plesiomorphic difFerence from Euherdmania is the short cesophagus, resembling Ritterella and Aplidium rather than Pyenoclavella (to which Euherdmania appears to be most closely related).
The genus is recorded only from Australian temperate waters and from the westem Indian Ocear. Two of the 3 known species are indigenous to Australian waters, The western Indian Ocean M. ramosus most tesembles the eastem Australian species M. radiatus n.sp., having numerouls papillae on each transverse vessel (see below). Monniotus australis, known from westcm and southem Australian waters, has only a single prapilta on each vessel - in the centre of each side of the body.

Monniotus australis (Kott, 1957)
(Fig. 1. Plate 1a)
Euherdmania australis Kott, 1957, p. 103 (part, not specimens from Camden Haven M. radlans n.sp.); 1972b, p. 172.

DISTRIBUTION

New Records: Western Australia (Houtmans Abrolhos, WAM 1016.83; off Dongara, WAM 926.89 929.89). South Australia (Great Australian Bight, SAM E2099-100 E2103 E2416, QM GH4147).
Previously Recorded: South Australia (Elliston Bay - QM G9291 Kott 1972b; Waldegrave I. - SAM E2111-2; Investigator Strait - Kott 1972b). Victoria (Port Phillip Heads - holotype AM Y1317 Y1165 Kot 1957).

DESCRIPTION

External Appearance: The colonies are straight-sided, club-shaped lobes, tapering to common stolons at their narrow basal end. The terminal, expanded part is triangular in section with a flattened, triangular, slightly oblique free end. The lobes are from 1 cm (Westem Australia and Bass Strait) to 4 cm (Great Australian Bight) long, and only rarely divided along their length. Sand grains are packed in a single layer in the very thin test to form a hard, rigid but brittle coat. Delicate internal test without sand is present only posterior to the thorax, which, when expanded, fills the inside of each lobe, the body wall adhering closely to the rigid sand-filled coat. The bratchial aperture is directed downwards from the middle of the base of the triangular free end of the head just below its margin. The atrial aperture is directed upwards from just inside the apex of the triangle on the free end of the lobe. The openings are sometimes transverse, with 3 well separated small pointed lobes on each lip of the opening.
Internal Structure! The body wall is vety delicate with about 12 fine longitudinal and oblique muscles extending the whole length of the zooid from the thorax to the posterior end of the long, narrow posterior abdomen. About 30 pointed tentacles of various sizes are in a circle around the base of the branchial iperlure, The neural duct is short and funnet-shaped with a circular opening into the pharynx. There are 9 or 10 rows of about 30 stigmata anteriorly, but posterior rows are shorter. All except the posterior 3 rows are crossed by a parastigmatic vessel. The transverse and parastigmatic wessels each have a single tongue-shaped to pointed papilla in the centre. Triangular dorsal languets are also on the
parastigmatic vessels as well as on the primary. transverse vessels. The oesophagus is curved and narrow, opening into the stomach about halfway down the very small abdomen (never more than half the length of the thorax and often less). The stomach has about 12 shallow, often inconspicuous glandular ridges, on its parietal wall. These are obscured when the abdomen is contracted. The mesial wall of the stomach has irregular fidges. A long narrow duodenal region and oval posterior stomach are in the descending limb of the gut loop. A rectal valve is at the junction of the mid-intestine and rectum. The anus opens half-way up the thorax. Its rim is bilabiate, but each lip is subdivided into a fringe of pointed lobes. Gonads consist of numerous small follicles bunched in a long grape-like or narrow cylindrical mass around the vas deferens. A 4 or 5 -egg ovary is in the top of the posterior abdomen.
Specimens from Price L collected in April (QM GH4147), and Encounter Bay collected in October (SAM E2111-2 E2416) have up to 8 embryos aligned in a developmental sequence in the distal part of the oviduct (in the posterior half of the thorax). Thus there appear to be at least 2 breeding seasons.
The larval trunk is 1.1 mm long. A median ampulla with a cap of modified columnar epidermal cells is in each interspace between the adhesive organs and 4 rounded lateral ones are on each side of the median adhesive organs. Numerous, crowded ectodermal vesicles are present along each side of the median line from the postero-ventral corner and around the anterior end of the trunk to the branchial aperture. These branch off the sides of fine stalks from the larval ectoderm which trail anteriorly and posteriorly along each side the dorsal and ventral mid-lines of the trunk, and especially cluster around the postero-ventral horns of the hacmocoele near the base of the tail. The adhesive organs have an eversible axial cone in a deep tulip-shaped cup.

Remarks

The larval trunk appears to be similar to that of M. ramosus Millar, 1988. The branchial sac of the present species (which has a geographical range from western, across southern Australia to Bass Strait) has only a single papilla on each transverse vessel, white the eastern Australian M. radiatus n.sp., although it has colonies similar to the present species, has a branchial sac with numerous papillac like that of the African M. ramosus.

The zooids appear to arise from a central axial stalk in 2 (WAM 926.89 and 989.89) of the west-

FIG. 1: Monnionus australis - a, part of colony (QM GH4147); h, immature zooid with thorax contracted (WAM 929.89); c, mature zooid with embryos in oviduct (SAM E21I2); d, portion of branchial sac showing papillae on primary transverse and parastigmatic vessels (QM G9291); e, larva with some partly evented adhesive organs (SAM E2112). Scales: $\mathbf{a}, 1 \mathrm{~cm} ; \boldsymbol{b} 0.5 \mathrm{~mm} ; \mathrm{c}, 2 \mathrm{~mm} ; \mathrm{d}, 1 \mathrm{~mm} ; \mathrm{e}, 0.4 \mathrm{~mm}$.
em Australian colonics. However this is only apparent, as zooids ratiate calt from bacal sislons fixed around a stem of weed.

Monniotus radiatus n.sp.

(Fig. 2)
Ewherdmania australis Kott, 1957, p. 103 (part, specimen from Camden Haven).

DISTRIBUTION

Tyfe Locality: New South Walcs (Nambucca Heads, 13 m, coll. J.E. Watson 11.1.72. hotatype QM G10012 MV F55435).
Further Recoros: Victoria (Ponland, QN GH93), New South Wales (Canden Haven - parabper AM G1356 Y1120 Kott 1957).

DESCRIPTION

EXTERNAL APPEARANCE: The colonies are a sandy mais of upright, club-shaped lobes, up to 2.5 cm long, often with one or two branches along their length. The widest part, j.c. the terminal free end not more than 3 mm in diameter. These lotws arise from a common basal mass. Each lobe conlains a single zooid.
The thack. terminal part of each lobe is triangulat in section and the free end is a flat isosceles triangle, with the branchial aperture direeted downwards from the middle of the base of the triangle, just below its margin. The atrial aperture is directed upwands from the upper surface just inside the apex of the triangle.

INTERNAL STRUCTURE: The contracted zooids are about Smm long, divided into thorax, short abdomen, and a relatively long posterior abdomen (up to half the total zooid length). Apertures are both 6-lobed on short siphons, the branchial one tumed ventrally, and the short, atrial siphon directed dorsally, at right angles to the longitudinal axis of the bouly. A mesh of very fine longitudinal and transverse muscle bands is on each side of the thorax, and the longitudinal bands continue along each side of the abdomen and posterior abdomen.

The thoraces of these zooids are relatively large, with 9 rows of about 20 stigmata. Each row except the last 3 (in which the stignata are shorter) are crosscd by parastigmatic vessels. Each of the parastigmatic and the primary transverse vessels have about 10 rounded tonguc-like papillae on them. The papillae on the parastigmatic vessels are smaller than those on the primary transverse vessels. A pointed trianglar dorsal languet is in the mid-line fover the dorsal
simus) also on both parastigmatic and transverse vessels. The parastigmatic vesscls appear to be bisecting the rows of stigmata, and increasing their number.
The oesophagus is relatively short, the small stomach (with 12 shallow longitudinal ridges) is halfway down the abdomen and there is a duodenal region and a mud-intestine in the distal part of the descending limb of the gut toop.

Gonads consist of bunched male follicles and a small ovary. Lan'ae are not known for this species.

REMARKS

The shape of hoth colony and zooids, including the orientation of their apertures resemble bouh the Australian M australis and the type species from Mozambique (Millar 1988). The African species differs from the present one in having less regular colony lobes which branch more along their length and appear to be less rigid, zooids with more rows of stigmata, and withoul parastigmatic vessels. However, in the present species absence of these vessels from the posterior rows of shom stignata indicates that they are actively bisecting the rows of stigmata to increase their number and this may not be a reliable distinction between the species.

Monnintus radiants overlaps the range of As. australis in Bass Stant.

Genus Condominiumun. gen.

Type species: Placentela aremlata Kntt, 1963.
The genus has large, embedded zooids, arranged in an integrated colonial system but not in cloacal systems. Six-lobed branchial openings directly to the cxterior are on one side of the colony, atrial openings on the other. Stigmara are in mumerous (at lcast 12) rows. Transversc as well as tongitudinal muscles are present on the thorax. Parastigmatic vessels are present occasionally, but branchral papillae are not. The cesophagus is short, and curves to open along the dorsal side of the shield shaped, bilaterally symmetrical, smooth stomach which is haltway down the abdomen. Testis follicles are bunched, and the ovary is anterior to the testis.

The genus is monotypic, being known only from its type, an indigenous Australian species with a range around the continent.

FIG. 2: Monnions radiclus n.sp. (paratype AM G1356) - a, part of colony; b, zooid; c, part of branchial sac showing papillae and dorsal languets on transverse and parastigmatic vessels; \mathbf{d}, anus. Scales: $\mathbf{a}, \mathbf{b}, 5 \mathrm{~mm} ; \mathbf{c}, \mathbf{d}$, 0.25 mm .

Condominium areolatum (Kott, 1963)
(Fig. 3, Plate lb-d)
Placentelu arenlata Kott, 1963. p. 74.
Placentela ellisioni Kort, 1972b, p. 173.
Homuevdistomat umasum Monniot, 1987, p. 503.

DISTRIBUTION

New Records: Westem Australia (Cockburn Sound. WAM 582.31). South Australia (Taylor 1., QM GH4161). New South Wales (Lord Howe 1s, QM GH4380). Qucensland (Heron I., QM GH4937: Central Section, Great Bartier Reef, QM GH5418). Northern Australia (Torres Strait, QM CH44931-6).
Previousty Recorded: South Australia (Great Australian Bight - AM U3925 Y'1316 Kott 1972b). Qucensland (Mackay - Kott 1963). New Caledonia (Manniot 1987).

DESCRIPTION

External Appearance: Colonics are very irregular, with curved, fan-shaped lamellae, from 2 104 cm along their outer edges, joined basally to
common test, and sometimes forming a cornct. Some specimens have lamellae fitting around one another like the petals of a rose (QM GH4161), but in others they arise at random from the common test. The test is britlle with sand extemally, but not internally. Internally only a thin layer of fairly tough, translucent test separates the zooids, which lie parallel to one another in a single layer in each lamella. The branchial apertures, directed downwards, open into a groove that is just hehind and parallel to the rounded rim on the outer curve of cach lamella. The atrial apertures open horizontally into a less well defined groove on the opposite side (inner curve) of the lamella, lower down than the row of branchial apertures. The grooves receiving the apertures are conspicuous in the preserved specimens, although the sand adhering to the outside of the colony obscures the actual openings. In photographs the atrial apertures of living specimens are seen dirceted upwards from a convex surface, the groove concealing them having disappeared.

INTERNAL STRUCTURE: Zooids are large but
transparent. Their total length, even when contracted is about 1.5 cm , with thorax, abdomen and posterior abdomen of about equal length. The branchial aperture usually is turned ventrally. The atrial aperture extends laterally from about one third of the distance down the dorsal surface (level with the fourth row of stigmata). Each aperture has 6 minute pointed lobes. Numerous parallel longitudinal muscles are on the thorax, and these cross bands of transverse fibrcs on the parietal body wall outside each transverse branchial vessel. Fibres from thcse transverse bands continue into the branchial vessels through the branchial connectives. Longitudinal muscles continue along the abdomen and posterior abdomen. There is a strong but narrow sphincter mus-

FIG. 3: Condominium areolatum gen. nov. - a, b, colony (QM GH4161) (a, external appearance; b, section through a lamella); c, zooid (QM GH4380). Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, 5 \mathrm{~mm}$; c, 2 mm .
cle around the base of each short siphon. The opening of the neural gland is a funnel-shaped ciliated pit. The long rectangular stigmata are numerous, about 50 in each of 17 to 20 rows. Branchial papillae are not present. Very fine parastigmatic vessels are present in the colony from Lord Howe 1. (QM GH4380), but not in other specimens.
The oesophagus is short, and the smooth, almost spherical stomach is in the upper half of the abdomen. The internal wall of the stomach is papillated and sometimes divided randomly into irregular areas and some transverse and irregular wrinkles. Duodenum, posterior stomach and midintestine are in the descending limb of the gut loop, the mid-intestine opening into the rectum at the base of the dcscending or ascending limbs or in the pole of the gut loop. The rectum has two cacca (forming a rectal valve) at its proximal end. The anal opening is near the posterior end of the branchial sac.
Gonads are not present in any of the newly recorded material, although they are present in material from South Australia (Kott 1972b). They consist of a small ovary anterior to the numerous small bunched testis follicles.
Advanced embryos with tails almost completely encircling the trunk (0.44 mm) are present in the type material (AM Y3925 Y1316) an ocellus and an otolith are present, but no other organs are developed.

Remarks

Kott (1963) overlooked the unusual and characteristic lamellae in the irregular type colony of P. areolata (Condominium areolatum).

The colonies of this specics (like Ritterella asymmetrica $\mathrm{n} . \mathrm{sp}$.) have well developed colonial systems that differ from those of most other species of Ritterella, which have rudimentary cloacal systems or homologues of them, in which excurrent streams are expelled into depressions or concavities where they reinforce one another (see Ritterella cornuta n.sp., below). Instead branchial and atrial apertures, respectively, are in rows parallel with the outer edge, and on opposite sides of the terminal border of colony lobes. In all lobes, the branchial apertures are turned down toward the base of the colony, while the atrial apertures are dirccted away from it as they are in the separate zooids of Monniotus, Dumus and Euherdmania. In the present species (as in R. asymmetrica) the excurrent streams from each of the zooids arc separated from incurrent water, and
probably are entrained by the currents that flow over the colony (see Kott 1989).
Colonies newly recorded from Torres Strait are not well preserved. They are very like the more irregular ones of this species taken from other locations, but although the zooids appear to have been identical in size and general outline, details of their structure are obscure.
Homoeodistoma omasum Monniot, 1987 from New Caledonia is conspecific with the present species, its characters falling within the intraspecific range of variations recorded in the Australian populations. Its occurrence in New Caledonia is not inconsistent with the temperatetropical range recorded for the species.
Despite their considerable colony size and widc geographic range, colonies of this species are seldom recorded. This may be because of the dense coat of sand, concealed zooid openings and irregular colonies which make them inconspicuous and readily overlooked in the field.

Family RITTERELLIDAE n.fam.

The family is erected for colonial aplousobranch species with zooids either entirely embedded, or separate, the former usually organised in colonial, and sometimes rudimentary cloacal systems. Branchial and atrial openings are 6 -lobed. Stigmata are in 4 or more rows. Parastigmatic vessels sometimes are present, as are branchial papillae. The oesophagus is short, and the barrelshaped, vertical stomach has folded or smooth walls. The gonads, in a long posterior abdomen, have the ovary at the top and the male follicles usually in a longitudinal series behind the ovary. The anus opens at least half way up the atrial cavity and there usually is a distinct rectal valve at the proximal end of the ascending limb of the gut loop.
Fertilisation and incubation of embryos is in the distal (thoracic) part of the oviduct. The small (trunk length 1.0 mm) larvae have 3 median, nar-row-stalked eversible adhesive organs cach with a small, shallow axial cone in an epidermal cup. Epidermal ampullae and vesicles suggest affinities either with Polyclinum (Dumus and the pedunculata group of Ritterella) or Aplidium (aequalisiphonis group of Ritterella).

Contracted zooids draw away from the surface to the base of the colony, as in Polycitoridae (see Kott 1990).

Many of the species from Australian waters (Ritterella pedunculata, R. asymmetrica, R. multistigmata n.sp., R. comuta n.sp., R. papillata
n.sp. and Dumus areniferus) have colonies like those of the claviformis group of Euherdmania (see below). Euherdmaniidae are distinguished by their long oesophagus and inverted tubular adhesive organs.
The anterior openings of the anus and the gonoducts, and (in Ritterella dispar) incubation of embryos in the distal (thoracic) part of the oviduct, are primitive characters shared with Placentelidae and Protopolyclinidae (e.g. Monnio$t u s)$. The short oesophagus, and small larvae with epidermal vesicles as well as ampullae also occur in Protopolyclinidae from which Ritterella is distinguished by its smaller, narrower zooids with fewer male follicles in a long, thread-like or stumpy but never tapering posterior abdomen, barrel-shaped stomach with more pronounced folds and smaller, shallower adhcsive organs. However, the relationship of Ritterellidae to Protopolyclinidae is not altogether satisfactorily resolved. A common diazonid ancestor is suggested by the persistence of branchial papillae in both families. The vertical stomach with longitudinally folded wall, and small larvae with shallow, stalked adhesive organs and epidermal vcsicles also suggest a relationship with Polyclinidae.

Pharyngodictyon Herdman, 1886, an abyssal genus without stigmata, is represented by 6 species of which only 2 are known from a single specimen (see Millar 1982). Zooids of P. mirabile Herdman, 1886, P. bisinus Monniot and Monniot, 1991 and P. mirabile: Kott 1969 resemble those of some Synoicum spp., with a smooth, barrel-shaped stomach, and without a constriction between abdomen and posterior abdomen. However, the zooids of P. elongatum Millar, 1982, P. cauliflos Monniot and Monniot, 1991 and P. magnifili Monniot and Monniot, 1991 have a longitudinally folded stomach. Thus it is possible that the genus is polyphyletic despite the fact that all species have a short oesophagus, zooids opening separately to the surface, and the transverse atrial aperture at the posterior end of the dorsal surface, sometimes with both its anterior and posterior margin divided into rounded lobes (see Kott 1969). Species presently assigned to this genus are separated from Euherdmaniidae by their short gut loop, and from the Placentelidae by the position of the heart (in the posterior abdomen). The vertical, barrel-shaped stomachs are more like Aplidium, Morchellium and Ritterella than the oblique, dorsally shortened ones of Protopolyclinidae, Pseudodistomidae, Polyclinum and Aplidiopsis. Millar (1982) suggests a relationship between Protoholozoa (Holozoidae) and

Pharyngodictyon, but the presence of a posterior abdomen and the shape of the stomach does not support that view. The genus is tentatively assigned to Ritterellidae on the basis of the separately opening zooids, short oesophagus and vcrtical barrel-shaped stomach.
The genus Ritterella (with 5 or more rows of stigmata and folded stomach) is well represented in the Australian fauna. Dumus Brewin, 1952 (with 4 rows of stigmata and smooth-walled stomach) is known from 2 species, one possibly indigenous to the temperate waters of New Zealand and southern and eastern Australia, and one from New Caledonia.

Genus Ritterella Harant, 1931

Type species: Amaroucium aequalisiphonis Ritter and Forsyth, 1917.

The genus contains embedded zooids opening independently, and sometimes organised in colonial systems. Colonies are often, but not always, brittle with sand. The stomach has longitudinal folds in its wall, sometimes shallow and inconspicuous but well defined in other species.
The species of Ritterella with parastigmatic vessels are R. tokioka nom. nov. and R. yamazii Tokioka, 1949 from Japan, R. arenosa (Brewin, 1950) from New Zealand, R. circularis Monniot, 1987 from New Caledonia, and R. asymenetrica and R. multistigmata n.sp. from Australia. Kott (1972a) proposed that the presence of 5 primary rows of stigmata (which sometimes are bisected by parastigmatic vessels) is characteristic of Ritterella. However, although 5 primary rows occur in many species it is not universal.
The type spccies R. aequalisiphonis (Ritter and Forsyth, 1917) from California was assigned to Sigillinaria Oka, 1933 by Van Name (1945), who, like Millar (1960), believed the genera synonymous. However Sigillinaria is a synonym of Placentela Redikorzev, 1913 (see above). Distoma pulchra Ritter, 1901 (Sigillinaria pulchra: Van Name, 1945) has a folded stomach, but long oesophagus, and despite its embedded zooids, is more like Euherdunania than Ritterella.
Most of the species of Ritterella can be assigned to one of 2 species groups, viz.:
(1) Aequalisiphonis group, containing R. prolifera (Oka, 1933), R. dispar Kott, 1957, R. tokioka nom. nov. (for R. pedunculata Tokioka, 1953), R. sigillinoides (Brewin, 1958) and R. glareosa Monniot, 1974, as well as the type spe-
cies of the genus. These naked or sandy colonies sometimes are stalked, the zooids are not arranged in distinct systems, and the short, thick posterior abdomina have bunched male follicles. The known larvae (of R. dispar, R. prolifera and R. glareosa) have epidermal vesicles separating directly from the epidermis like larvae of certain Aplidium spp. (see Fig. 60).
(2) Pedunculata group, containing R. pedurculata (Herdman, 1899) and 5 other sandy species, R. papillata n.sp., R. asymuetrica Millar, 1966, R. multistiginata n.sp., R. cornuta n.sp., R. compacta n.sp., from Australian waters. All have zooids arranged in systems, with sandy, usually narrow-stalked colonies (R. compacta excepted), long, narrow posterior abdomina with male follicles in longitudinal series, and larvae with pos-tero-ventral and dorsol vesicles, and anterior ampullae like Polyclinum. The naked Ritterella circularis Monniot, 1987 from New Caledonia is also a member of this group of species; and R. yamazii Tokioka, 1949 from Japan may be.
The known larvae have ectodermal ampullae and clusters of vesicles like those of Polyclinum.
Ritterella arenosa (Brewin, 1950) and R. vestita Millar, 1960 do not appear to have affinities with either of the species groups (see below). Nevertheless, Ritterella appears to be monophyletic.
Ritterella rubra Abbott and Trason, 1958 from California lacks systems, has zooids opening separately to the exterior but has a mulberry-like stomach and curved oesophagus. The species appears to have a similar relationship with Synoicum to that of Ritterella with Aplidium.
Seven species of Ritterella are known from Australian waters, 5 from thc temperate waters of the southern coast, where the genus appears to have radiated (Table 3). These and other aplousobranch species with scparately opening zooids (e.g. Dumns areniferus, Monniotus spp., and Condoninium areolatum n.gen.) appear to flourish in the same sandy coastal habitats.

Key to species of Ritterella recorded from Australia

1. Lobes of colony long and narrow 2

Lobes of colony not long and narrow 6
2. Stigmata in 5 rows 3

Stigmata in more than 5 rows 5
3. Parastigmatic vessels present..... R. asymmetrica Parastigmatic vessels not present .4
4. Branchial papillae present R. papillata n.sp. Branchial papillae not present .. R. pedunculata
5. Parastigmatic vessels present \qquad
R. multistigmata n.sp.

Parastigmatic vessels not present \qquadR. cornuta n.sp.
6. Colony sandy; zooids in systems \qquad R. compacta n.sp.

Colony not sandy; zooids not in systems . \qquad

Species recorded from regions other than Australia.

In addition to the species recorded from Australia, which are all indigenous, the genus is known from the eastern Pacific (southern California) by the type species, and from New Zealand and Japan by the following:

Ritterella arenosa (Brcwin, 1950) from New Zealand (Great Barrier I. and Hauraki Gulf; see also Brewin 1958). Despite its smooth stomach (which occurs also in Dumus) the specics, with its zooids cmbedded (rather than separate) in sandy flat-topped lobes, parastigmatic vesscls (like R. asymmetrica), 9 or 10 rows of 20 to 24 stigmata, and narrow postcrior abdomen with the ovary in front of the longitudinal series of testis follicles, seems most appropriately assigned to Ritterella. It shares some charactcrs with Homoeodistoma longigona Tokioka, 1959, although the latter species scems to have closer affinitics with the Diazonidac (scc above, Placentelidac).

Ritterella circularis Monniot, 1987 from New Caledonia has circular systems with the atrial apertures in a central depression as in R. compacta n.sp. The species also has a similar number of rows of stigmata. Unlike R. compacta its colony is not sandy, has more stigmata per row, has parastigmatic vessels, and lacks branchial papillae.
Ritterella glareosa Monniot, 1974, from 300 m on a sea-mount in the northern Pacific, is thought isolated there. The sphcrical, sand-encrusted species has 5 to 7 rows of numerous stigmata, and the usual slender muscle bands extend the whole length of the body. Testis follicles are bunched, but this could be the result of contraction of the postcrior abdomen. They are not as numerous as they are in Protopolyclinidae. As in other species, the rectum and gonoducts extend at least halfway up the atrial cavity, and there is a rectal valve at the proximal cnd of the ascending limb of the gut loop. The stomach has 5 faint longitudinal folds. The larvae have ectodermal vesicles but no ampullae, and there is an otolith but no ocellus. The specics is distinguished from others by the form of its colony and the number of faint stomach folds. The embryos probably are incubated in the distal part of the oviduct, as are the embryos of R. dispar and R. prolifera, from which the present species is distinguished by its sand encrusted colony, and fewer stomach folds.
Ritterella prolifera (Oka, 1933) from Japan (see Tokioka 1953) closely resemblcs R. dispar, differing from it only in having 6 (rather than 5) rows of stigmata.
Ritterella sigillinoides (Brcwin 1958) from Stewart I. has a fleshy stalked colony without sand, no systems, zooids with 5 rows of stigmata, a folded stomach and

TABLE 3. Summary of characters of species of Ritterella recorded from Australia

Species	Biogeographif range	Range anticlockwise around Australia	Colony	Systems	Stigmata: no. rows; no/row	Parastigmatic vessels	Branchial papillac	Stomach folds
R. compacta n.sp.	A.te	Gt Australian Bight	sandy, compact cushion	rudimentary cloacal	15;20	absent	10	6
R. comuta n.sp	A,te	"	sandy stalks	"	9:15-20	absent	15	$6+$
R. papillata n.sp.	A,te	"	"	"	5;15	absent	15	8
R.pedunculata	A,te	Gt Australian Bight 10 Solitary Is (NSW)	"	colonial	5;12	absent	0	4-5
R. assymmetrica	A,te	Gt Australian Bight to Port Phillip Bay	-.	-	5;20	present	0	15
R. dispar	IWP.tr	NSW to Mackay	naked lobes	none	5:16	absent	0	15

[^1]neither branchial papillae nor parastigmatic vessels. Colonies superficially resemble R. prolifera or R. dispar, but these species are sessile, and lack the narrow stalk of the present onc.
Ritterella tokioka nom. nov. for R, pedunculata Tokioka. 1953 from Japan has 12 rows of stigmata, each crossed by parastigmatic vessels, a short oesophagus and folded stomach. The colonics are stalked heads arising from a basal stolon resembling those of R. sigillinoides from New Zealand, but the zooids differ.
Ritterella vestita Millar, 1960 from the North Island, New Zealand. This species has a sandy, stalked head, without systems, zooids with 27 to 34 rows of 40 to 50 stigmata, a folded stomach, and testis follicles in a longitudinal scries. It lacks both parastigmatic vessels and branchial papillae.
Ritterella yamazii Tokioka, 1949 from Japan is a soft semitransparent cushion with 5 rows of stigmata with parastigmatic vessels, 10 stomach folds, 2 rows of testis follicles, and epidermal vesicles in the larval test
Ritterella sp. aff. aequalisiphonis: Tokioka, 1967 from Japan, has 14 rows of stigmata. Its naked, clavate colonies distinguish it from most Australian species.

Ritterella asymmetrica Millar, 1966
(Fig. 4. Plate Ie,1)
Ritferella asymmetrica Millar, 1966, p. 361.

DIStribution

New Records: South Australia (Great Australian Bight, SAM E2102 E2IO4, QM GH4157 GH4195 GH4930; Kangaroo I., QM GH5427; Capc Jalfa, QM GH5445). Victoria (Nelson Bay, MV F57792). Previously Recorded: Victoria (Port Phillip - MV H39 Millar 1966).

DESCRIPTION

External Appearance: Colonies consist of upright, sandy, cylindrical to flattened stalks up to 4 cm long, branching along their length, with terminal more or less club-shaped but bilaterally symmetrical expansions up to 1 cm long and 6 mm wide. On one side, the long terminal expansion is slightly flattened, with a scalloped margin. On the other, it is deeply convex. The atrial apertures open around the outside (deeply convex side) of the scalloped margin, and the branchial apertures

FIG. 4: Ritterella asymmetrica (MV F57792) -a, pan of colony: b, r.ooid (posterior half of pusterior abdomen shown separately). Scales: $a, 1 \mathrm{~cm} ; \mathrm{b}_{1} 1 \mathrm{~mm}$

are in a groove around the other (flat) side. Sand covers the outside of each stalk but is absent from the delicate internal test. In some of the preserved specimens the internal terminal expansion is spoon-shaped, its flat side slightly concave. In life it is probably slightly convex, presented to oncoming currents, deflecting the current past the branchial apertures that surround it.
The scalloped margin around the free end of cach lobe is formed by the surface test swelling over the anterior end of each zooid. Each lobe of the colony contains up to 16 zooids, arranged parallel to one another in a single layer.
Internal Structure: Zooids are about 1 cm long, with thorax and abdomen of more or less squal length, and a longer, thread-like posterior abdomen. Both apertures are sessile, transversely elongated, and the 6 lobes around the rim of each opening are minute, sharply pointed and widely separated from one another, 3 on each facing lip. The branchial aperture is terminal and bent ventrally, the atrial sub-terminal and directed dorsally. A sphincter muscle is present around each aperture. A layer of fine transverse thoracic muscle fibres surrounds the slender longitudinal mascles which extend from the thorax onto the abdomen. Each of the 5 rows of about 20 long, narrow, parallel stigmata, is crossed by a conspicuous parastigmatic vessel. The transverse vessels are wide membranes projecting into the Jumen. When contracted the edges of these membranes are drawn into tight frills that superficially resemble branchial papillae. However branchial papillae are not present. Triangular dorsal languets are on parastigmatic vessels as well as on primary transverse vessels.
The short, barrel-shaped stomach is in the anterior half of the abdomen, Twelve to 15 longitudinal folds are in its parietal wall, but the surface of the mesial wall is irregular. A long duodenal area, mid-gut and oval posterior stomach occupy the remainder of the descending limb of the gut loop. The rectumexlends halfway up the thorax to open in a bilabiate anus just behind the atrial aperture. A small ovary with up to 12 small eggs is in the anterior part of the posterior abdomen. Mature testis are not present in any of the newly recorded South Australian and Victorian specimens (collected in April and Jure respectively), although they are present in the type specimen in 2 irregular longitudinal series (Millar 1966).

Remarks

Millar (1966) believed that the branchial sac: contained 10 rows of stigmata rather than 5 , mis-
interpreting the parastigmatic vessels. These are true parastigmatic vessels, with the long stigmata continuous beneath them. The number of stigmata is difficult to determine in contracted spocimens, but although at least 20 were counted there do not seem to be as many as the 35 Millar (1966) recorded.

Kott (1972a) discussed the possibility of this species being conspecific with R. pedunculata, suggesting that differences between the 2 spocies, viz, the size of polonies, zooids and branchial sacs, could be associated with growth. However, growth and maturity of R. pedunculata is not associated with incteases of the order that could explain the differences. Although very large colonies of R. pedunculata have been examined, they all consist of the characteristically narrow lobes with not more than 12 zooids, and short stigmata without parastigmatic vessels. Further, the colonies are different, for atrial apertures of R. asymmetrica open around the convex sides of a club-shaped terminal expansion to form systems homologous with those of Condominium areolatum (see above); while those of R. pedunculata open in a row onto the concave side of a flat, fan-shaped expansion to form analogues of cloacal systems (sec R, comuta n.sp., below).
Transverse apentures with widely separated minute lobes on their rims are found in Monniotus spp, although, no phylogenetic relationship is implied by this. Rather the arrangement is an adaptation associated with the openings on opposite sides of the colony (see Kott 1989).

Ritterella compacta n.sp.
(Fig. 5. Plate 2a,b)

Distribution

TyPe Locality: South Australia (Investigator Group, Flinders T ., in caves, coll. N. Holmes 10.4.83, holotype QM GH2399 SAM E2094; eastern side of Grindle I., 10-15m, coll. W.H. Sasse, 7.4 .87 paratype, QM GH4172 SAM E2095; Price 1., $15-20 \mathrm{~m}$, coll. N, Holmes 9.4.87, paratype QM GHA177 SAM E2096).
Eurther Records: None.

DESCRIPTION

External Adpearance: Colonies are compact, sessile, and hemispherical to almost spherical, with the surface either undivided or (QM GH4177) subdivided intotightly packed cylindrical lobes, each containing a single circular system of 6 to 8 zooids. The test is sandy throughout and the zooids are in rigid, vertical compartments. The branchial openings are in circular depres-
sions, around the periphery of the rigid sandy swellings or lobes (almost 5 mm diameter) on the surface of the colony. Atrial openings are in a depression of varying depths in the centre of each

FIG. 5: Ritterella compacta n.sp. - a, diagrammatic cross section through a system (holotype QM GH2399); \mathbf{b}, whole zooid (paratype QM GH4177); \mathbf{c}, d, zooids (holotype QM GH2399); e, atrial siphon showing extended dorsal rim of aperture and dorsal median papilla (holotype QM GH2399). Scales: b-d, $1 \mathrm{~mm} ; \mathrm{e}, 0.2 \mathrm{~mm}$.
lobe. Sometimes the central depression is deeper and forms a rudimentary cloacal cavity (QM GH2399 GH4172), opening to the surface through a central aperture and recciving the atrial openings of the zooids that surround it. A layer of sand continuous with the layer encrusting the outside of the colony lines the inside of the rudimentary cloacal cavity, It is homologous with the simple depression in the less compact colony (QM GH4177).
Internal Structure: 'The zooids are about lcm long, they have a long thorax, a slightly shorter abdomen and a posterior abdomen that varies from about half to one third of the total zooid length. The 6 -lobed branchial aperture is terminal, and the large atrial siphon subterminal. Often the anterior rim of the atrial siphon is produced into a lip of various lengths. The tip of the lip is divided into 3 pointed lobes, and the lower (posterior) half of the rim of the atrial aperture has another 3 widely separated small, pointed, lobes. In some zooids a pointed projection, or papilla projects from the dorsal mid-line on the posterior wall of the atrial siphon.

Circular muscles are present around the branchial and atrial apertures, curving out along the anterior atrial lip when one is present. About 12 longitudinal muscles extend down the thorax from each of the siphons. Posteriorly they extend along each side of the abdomen and posterior abdomen. Atrial lips are inserted into the rim of cloacal depressions or into the margin of cloacal apertures, so that the zooids in each system provide some muscular control around the rim of the opening.
Sixteen rows of about 20 stigmata are separated from one another by transversc vessels with about 14 rounded papillac on each. The stomach, with about 6 longitudinal folds on the parietal wall and irregular creases on the mcsial wall, is about halfway down the abdomen. There is a duodenum and a mid-intestinc in the descending gut loop. A distinct rectal valve is present at the proximal end of the ascending limb of the gut loop.
Gonads are in the upper half of the posterior abdomen, the 3 or 4 egg ovary anterior, and behind it almost spherical male follicles are bunched togethcr.

Remarks

Variations in length of atrial lip and the shape of the dorsal median papilla (on the posterior wall of the siphon) probably result from muscular action. With the exception of those variations, the zooids in the 3 available colonies of this species
have the same characters. However, the colonies are more variable. The compact colonies with rudimentary cloacal systems superficially look very different from the one with its upper surface divided into lobes and with cloacal depressions rather than cavities. Neverthcless, these seem to be differences of degree rather than definitive morphological differences.
The species demonstrates the close relationship between forms without, and others with, true cloacal systems. Despite the variations in the development of separate lobes, this species does not have the same capacity to respond to changes in prevailing currents as the stalked Ritterella,
The rudimentary cloacal system is a unique feature in this genus. It has not been observed in other Ritterella spp; although it parallels certain species of Eudistoma (e,g. E. angolamum, E. carnosum, E. reginum: see Kott 1990). The branchial sac with its branchial papillae and numerous rows of stigmata resembles that of Ritterella cormuta n.sp.

Ritterella cornutan.sp.
(Fig. 6. Plate 2c)

Distribution

Type Locni.ty: South Australia (Price I., colt. W.H. Sasse 9.4.87, holotype QM GH4176 SAM E2098). Further Records:None.

DESCRIfTION

External Appearance: The colony consists of narrow, sandy stalks about 2 cm long and 0.4 cm in diameter atlached basally to branching stolons. Terminally they are divided into 2 or 3 flattened. fan-shaped expansions, and have 2 or 3 branches along their length. The icrminal flattence part of cach lobe has a median depression. This depression receives the atrial apertures of the zooids which are arranged in a row along each side of the depression. The branchial apertures are along the outside of the rounded rim along each side of the modian depression. Sand forms a dense coat around the outside of the colony and there is some cmibedded in the internal test.

Internal Structure: The zooids are about 1 cm long. Thorax and abdomen together represent slightly more than half the length of the zooid. Each aperture has 6 pointed lobes. The branchial aperture is terminal, oriented slightly ventrally, and the atrial aperture, on a short siphon
FIG. 6: Ritterella comma n.sp. (holotype QM GH4176) - a, part of colony; b, zooid; c, thorsx. Scales: a, $5 \mathrm{~mm} ; \mathrm{b}, \mathrm{c}, 1 \mathrm{~mm}$.

directed at right angles to the long axis of the zooid is about one quarter of the thorax length along the dorsal surface.

The body musculature is longitudinal and oblique, although in the examined zooids most bands extend transversely across each side to the dorsal surface before running the length of the zooid. About 5 bands are from the branchial siphon and a further 12 are from the endostyle. The muscles extend onto the abdomen and posterior abdomen from each side of the dorsal mid-line of the thorax. Stigmata are arranged in 9 rows of about 15 to 20 . About 2 rounded papillae to every 3 stigmata are on the transverse vessels. There are no parastigmatic vessels.

The abdomen is relatively short, the stomach about halfway down, with about 6 indistinct oblique folds on the parietal surface, but with irregular creases on the side facing the ascending limb. A short duodenum and mid-jintestine are in the descending limb distal to the stomach. The rectum extends about halfway up the thorax, terminating in a bilabiate amus. Gonads are not present in these specimens. The heart is present in the posterior end of the posterior abdomen.

REMARKS

The species most closely resembles Ritterella papillata nisp., which has similar although narrower colonies and forms rudimentary cloacal systems. The latter species has smaller zooids with only 5 rows of stigmata and is thus distinguished from the present species. The colonies of both resemble those of R. pedunculata, but the latter species-lacks branchial papillae and has a bilaterally symmetrical concavity at one side, rather than a radially symmetrical one on the free end of the lobe surrounded by zooids, as it is in the present species and R. papillata ni,sp. Nevertheless, these concavities in R. cornuta, R. papillata n, sp, and R pedurculata all serve to concentrate the excurrent streams of water and separate them from the incurrent streams. Ritterella asymmetrica is different, the atrial openings being around the convex side of the terminal expansion (see Condominilum areolatum, above).

Ritterella dispar Kolt, 1957
(Fig - 7. Plate 2d)
Rillerella dispar Kole, 1957, p. 102; 1963, p. 78. Monniot and Monniot, 1976, p. 360.
Rifferella prolfferus: Kott, 1972c. p. 245; 1981, p. 157 (part, specimen from Lord Howe 1.).

Distribution

New Records: Queensland (Moreton I., QM GH4940; Noosa, QM G4969; Capricorn Group, QM G9468 GH881 GH4941-4 GH4947-8 GH4950-1).
Preyiously Recorded: New South Wales (Arrawarra QM GH5588), Queensland (Caloundra-AM U3897 Kott 1957; Currumbin - Kott 1963; Moreton Bay, Hervey Bay, Noosa Heads; Sarina - AM Y1116 Kot 1963). Lord Howe I. (QM G12001 Kon 1981). West Indian Ocean (Mauritius. - Monriot and Monniot 1976).

The species is very common in the intertidal region on the mid-eastern coast of Australia and the southern part of the Great Barrier Reef. It has not been taken from the westerm Pacific - reexamination of the specimen from Fiji, which Kott (1981 QM GH102) assigned to R. proliferus, has shown il to be an Aplidium sp.

DEscription

External Appearance: Small flat-topped sessile cushions, sometimes lobed, and round to polygonal in outline, form mosaics on hard substrates. They are attached by the centre of the flat basal surface. The relatively thick, but fairly short evenly spaced zooids open on the flat upper surface. Colonies are one or 2 cm in maximum extent, and never more than 1 cm thick. When expanded, the crowded colonies appear to be continuous with one another, but when either contracted or preserved they are seen to be separate. In life they are a flesh colour, with white zooids shawing through, of 'ochraceous buff' (Ridgeway 1886) with iridescent blue zooids.
Internal Structure: Zooids are relatively short (about 5 mm) but quite thick, with a short posterior abdomen, and a wide thorax. Apertures are both anterior, each surrounded with 6 pronounced lobes. The lobes of the atrial aperture are particularly long, petal-like, and sometimes divided into 2, although those of the branchial aperture are shorter and triangular. Sphincter muscles ane present around the base of each siphon. About 15 fine, parallel longitudinal muscles are on the thorax, and extend along the ventral side of the abdomen and posterior abdomen. Transverse muscles were not detected. There are 5 rows of 16 stigmata. Neither parastigmatic vessels nor branchial papillae are present, The oesophagus is short, and the stomach broad, with 15 parallel longitudinal folds. There is a broad duodenal region. An oval posterior stomach is in the bend of the gut loop. It is separated from duodenum and rectum by narrow mid-intestinal constrictions. A rectal valve is at the base of
the ascending limb. Both gonoducts and anus open in the anterior part of the atrial cavity, near the base of the atrial siphon. The anal border is bilabiate. Gonads are in the short, stumpy posterior abdomen, the testis follicles in a more or less spherical clump, surrounding the ovary.
Specimens taken in May and August from the Capricorn Group (QM GH4941 GH4947) and in May from Noosa (QM GH4969) contained embryos. Embryos were not present in specimens taken from the Capricom Group in February and April.
Each zooid contains one (QM GH4969) to 3 (QM GH4947) embryos or infertilc ceggs serially arranged in the distal (thoracic) part of the oviduct. Only the most anterior egg appears to mature to a tailed larva, and it is possible that the other eggs may be infertile. In specimens from Noosa (QM GH4969) there is a single tailed
larvac in the distal cnd of the oviduct with what appears to be an infertile egg just behind it.
In one colony, the larval trunk varies in length from 0.6 to 0.8 mm . It has the tail wound threequarters of the way around it. The 3 median adhesive organs have wide shallow cones of secretory cells, and narrow stalks. Seven to 9 large epidermal vesicles in a row on each side are scattered around the adhesive organs as the larva matures. An ocellus and an otolith are in the cerebral vesicle.

Remarks

These elegant transparent cushion-like colonies with independently opening zooids are significantly different from the colonics of other Ritterella spp. recorded from Australia, with their narrow sandy stalks and zooids arranged in colonial systems. There also are differences in the zooids, those of the present species being similar

FIG. 7: Ritterella dispar - a, colonies viewed from above (QM GH4969): b, zooids scen in margin of colony viewed from below (QM GH4951); c, d, zooids (c, QM GH4951; d, QM GH4943); e, larva (holotype AM U3897). Scales: a. 1 cm ; b, 2 mm ; c, d $1.0 \mathrm{~nm} ;$ c, 02 mm .
to others of the aequisiphonalis group, while zooids of other Australian species belong to the pedunculata group.

The relationship between R. prolifera (Oka, 1933) from Japan (see Tokioka 1953, Nishikawa and Tokioka 1976) and the present species is also very close, the only difference detected being the 6 rows of stigmata in the Japanese species as against 5 in R. dispar. Both species have deep, petal-shaped and sometimes bifid atrial lips, fine longitudinal body muscles, a short stomach with parallel folds, short posterior abdomen with bunched male follicles, up to 3 eggs in the distal end of the oviduct, and an identical larval trunk with a row of large, spherical ampullary vesicles each side of the adhesive organs, but no ectodermal ampullae. The colonies also are very similar, R. prolifera having the same flat, cushion-like, whitish, iridescent colonies that form mosaics on hard substrate and weed. On the basis of these similarities, Kott (1969, 1972d) proposed the synonymy of R. dispar and R. prolifera. They are presented here as separate species solely on the basis of the difference in the number of rows of stigmata.
The lack of continuity in the geographic range of the present species, with populations in Mauritius (Monniot and Monniot 1976) and on the sub-tropical coast of eastern Australia, is puzzling. There are no records from further north than Mackay, despite the fact that the species is common on the central coast. It is probable that the West Indian Ocean populations are isolated from the Australian ones.

Ritterella multistigmata n.sp.

(Fig. 8. Plate 2e)

Distribution

Type Locality: Western Australia (Sisters Reef, Murray Reef Warnbro Sound near Rockingham, $46^{\circ} 21.3 \mathrm{~S} 115^{\circ} 41.3 \mathrm{E}$, coll. AIMS Bioactivity Group 22.3.89, holoytpe QM GH5463).

Further Records: None.

DESCRIPTION

External Appearance: The holotype colony is a large one, consisting of long (to 7 cm), narrow (to 4 mm diameter) sandy stalks, branched up to 3

FIG. 8: Ritterella multistigmata n.sp. (holotype QM GH5463) - a, part of colony; \mathbf{b}, thorax and abdomen; c , portion of branchial sac showing the neural gland and its opening, transverse and parastigmatic vessels, dorsal languets, and branchial papillae. Scales: $\mathbf{a}, 1 \mathrm{~cm} ; \mathbf{b}, 1 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm}$.

times along their length. The terminal free ends are slightly expanded club-, or spoon- or farlshaped. Each contains one to 3 zooids. Sand is crowded on the outer surface and is embedded in the surface layer of test making it brittle. Howeves there is no sand intemally, where zooids are in narrow longitudinal compartments in the transparent but tough test.
The long branching stalks of the colony are parallel to one another, and are crowded together to form compact masses.

Internal Structure: Zooids are long and delicate, extending from the free end of a terminal lobe to the base of the colony. Most of that length is the narrow, thread-like posterior abdomen. The thorax and abdomen are together about 9 mm long, with the abdomen about two-thirds the length of the thorax. The branchial aperture is turned ventrally, and the atrial aperture is directed anteriorly. Each of the apertures has 6 small points around the rim.
The thoracic body wall has an open meshwork of fine longitudinal and transverse muscle bands. Only the longitudinal bands extend to the posterior end of the zooid. The branchial sac has 10 rows of long, narrow stigmata each row crossed by a sturdy parastigmatic vessel which appears to be futther subdividing the row of stigmata. Eich Irunsverse and parastigmatic vessel has about 12 large conspicuous rounded papillae evenly spaced along it, There are large triangular dorsal languets on parastigmatic as well as on primary transverse vessels. About 35 stigmata per row are in the rows about halfway down the pharynx, but fewer anteriorly, and even fewer posteriorly. Sixteen stigmata are in the most posterior row.
The long, oval stomach is halfway down the abdomen. The stomach wall is smooth externally but has fine longitudinal ridges internally. The post-pyloric part of the gut is wide, and has no marked divisions. The bilabiate anus opens about halfway up the branchial sac.
Gonads are not developed in this specimen,

Remarks

Although they seem to branch more, the sandy stalks of this species with their asymmetrical tips most resemble those of Ritterella pedunculata and R. asymmetrica. Other Ritterella spp, have similar sandy stalks but radially symmetrical tips. Nevertheless Ritterella comuta and R. papillato $\mathrm{n} . \mathrm{sp}$. are the only other stalked species that have numerous branchial papillae on the transverse vessels. However, both species lack parastigmatic vessels, R. papillata n.sp, has only 5 rows
of stigmata, and although R. cornura has a similar number of rows of stigmata (9) to the present species, it has a folded stomach wail rather than internal ridges. Ritterella compacta also has numerous rows of stigmata and branchial pepillae, stomach folds, an atrial siphon with a long anterior lip adapted for circular colonial systems, and a compact colony, but it lacks parastigmatic vessels.
The urique characters of the present species are its branchial papillae, parastigmatic vessels, internally ridged stomach, and fine meshwork of tongitudinal and transverse muscies on the thorax.

Ritterella papillata n.sp.
 (Fig.9)

DISTRIBUTION

Type Locality: South Australia (Price L., coll. WH. Sasse 9.4.87, holotype QM GH4148 SAM E2097; Taylor 1., coll. W.H. Sasse 6.4.87, paratype QM GH4217). Furtilier Records: None.

DESCRIPTION

External Appearance. The colonies consist of a tangle of narrow, sandy stalks ap to 5 cm long, with a terminal inverted conical expansion, concave on the free end. The atrial apertures open around the inside of the terminal concavity and the branchial apertures are in a single circle around the outside of its rounded margin. The sandy test is sometrmes raised in rounded swellings over the anterior end of each zooid. Up to 10 zooids are in cach lobe. The terminal concavities often are turned to the side, presumably facing away from the oncoming current, which. as it passes the colony, probably entrains the excurrent stream of water (sec Kott 1989).
internal Structure: Zooids are long and thread-like, with a long posterior abdomen thal is up to 3 cm long - many times the length of the thorax and atrdomen together (about 2 mm). There are black pigment cells scattered in the body wall. Each aperture has 6 small sharply pointed lobes. The branchial aperture is terminal, turned slightly ventrally. The atrial aperture is about one-third of the distance down the dorsal surface of the thorax. About 20 thoracic muscles are oblique (from the branchial siphon to the dorsal surface) and transverse (from the ventral mid-line), joining into bands along each side of the abdomen and postcrior abdomen.
In the branchial sac about 15 stigmata are present in cach of 5 rows. The transverse vessels have flat, rounded papillae, containing dark black

pigment, about one to each stigma, along their edge. There are no parastigmatic vessels. The short stomach lies halfway down the abdomen. It has 6 broad but faint, oblique, parallel folds on the parietal wall, but its mesial wall is smooth. The bilabiate anus is halfway up the branchial sac. The gonads are in the posterior half of the posterior abdomen the small (about 3-egg) ovary anterior to a single longitudinal series of male follicles. In the type specimens, there are 4 or 5 embryos in the atrial cavity, but these do not include tailed larvac.

Remarks

Although the colonies of R. cormuta are similar, those of the present species are narrower, and the terminal expansion is less flattened and not so wide. The zooids of the present species are smaller, with fewer rows of stigmata but much longer posterior abdomina. The accumulations of black pigment in the branchial papillae are not present in R. cormuta. Ritterella pedunculata and R. asymmetrica differ in not having branchial papillae. The terminal depressions containing the atrial openings are homologous with those of R. cormuta ($\sec R$. cornuta n.sp. REMARKs) and R. compacta n.sp. They are also radially symmetrical like those of R. cornuta, not bilaterally symmetrical like R. pechunculata.

Ritterella pedunculata (Herdman, 1899)
(Fig. 10. Plate $2 \mathrm{f}, \mathrm{g}$)
Psammuplidium pedunculatun Herdman, 1899, p. 88.
Not Ritserella pedunculuta Tokioka, 1953, p. 184 (R. tokioka nom. nov.).
Riverella herdmania Koth, 1957, p. 102 (part specimens from NSW): 1963, p. 78: 1972a. p. 11 (part); 1972ヶ, p. 172: 1975, p. 2.

Distribution

New Records: South Australia (Greal Australian Bight, SAM E2417: Spencer Gulf, QM GH1823 GH4927: St. Vincent Gulf, QM G9323; Margaret Brock Recf, SAM E2101: Capc Nurthumberland QM CiH4928-9). Tasmania (Bruny 1., MV F57793; St. Helens, QM G10156). Victoria (90 ml Beach, QM G12713; Purtland, QM GHy5; Purt Phillip Bay, QM G10160 GH4682; Westcrnport, MV F57790 F57794). New South Wales (Port Hacking, AM Y2170; North Solitary 5., QM G9642; Arrawarra, QM GH5393).

F1G, 9: Ritterella papillata n.sp. (holotype QM GH4148) - a, part of colony; b, thorax and abdomen; \mathbf{c}, part of postcrior abdomen with gonads. Scules: a, $5 \mathrm{~mm} ; \mathbf{b}, 0.5 \mathrm{~mm} ; \mathbf{c}, 2 \mathrm{~mm}$.

Previously Recorded: South Australia (Great Australian Bight - SAM E2105-10 QM G9292 Kott 1972b, 1975; St. Vincent Gulf - SAM E2450 Kott 1972a). New South Wales (Port Hacking, Newport AM U3862 U4017 Y821 Y1131 Y2170 Koll 1957, 1963; Port Jackson - Herdman 1899).
fast-flowing currents. The species is very common in Port Phillip Bay.

DESCRIPTION

EXTERNAL APPEARANCE: The colonies are sometimes very large tangles of thin, sandy, branching stalks, one to 6 cm long, attached to

FIG. 10: Ritterella pedunculata - a-d, parts of colony and separate lobes (a-c, QM G9292; d, MV F57794): e. f, zooids (e, F57793; f, MV F57794); g, larva (MV F57793). Scales: a, $5 \mathrm{~mm} ; \mathbf{b}, \mathbf{c}, 1 \mathrm{~mm} ; \mathbf{d}, 2 \mathrm{~mm} ; \mathbf{e}, \mathbf{f}, 0.5 \mathrm{~mm}$; g, 0.2 mm .
basal stolons, and with flattened spatulate to fanshaped tips which sometimes curve around to form a cornet, interrupted at one side. Up to 12 zooids are present in each lobe although usually there are fewer. The atrial openings are around the inside rim of the terminal, curved lamella and the branchial apertures around the outside of its rounded rim. Sand is thick externally but absent internally. Despite their outer layer of sand, collector's notes record specimens from St. Vincent Gulf (SAM E2450) to have been bright red.
Internal Structure: The zooids are threadlike, the thorax and abdomen together up to 5 mm long and with a much longer posterior abdomen. The apertures arc almost sessile on short siphons, the rim of each with 8 small triangular lobes. Some fine circular muscle bands are on the thorax and the siphons. The longitudinal bands are delicate and extend the length of the zooid. There are 5 rows of about 12 stigmata. Neither parastigmatic vessels nor branchial papillac are present. Triangular dorsal langucts are present over the dorsal sinus, on the transverse vessels.
The gut loop is slightly longer than the thorax, the oesophagus is short and the small stomach, smooth when distended but with 5 folds when collapsed, is not quite halfway down the abdomen. There is a distinct duodenal region and a posterior stomach in the descending limb of the gut loop. A rectal gland is at the junction of the mid-intestine and rectum.
The testis follicles are almost cylindrical, oriented longitudinally, and in a single series. When the posterior abdomen is contracted the male follicles are slightly bunched together. The small ovary is anterior to the testis, just behind the gut loop.

Up to 2 embryos, some developed to tailcd larvae, are in the atrial cavity of specimens collected in February from Bruny 1. (Tasmania) and Elliston Bay (S. Australia), in July from Portland (Victoria), and November (St. Vincent Gulf). The larval trunk is 0.6 mm long. Single median cctodermal ampullac alternate with the adhesive organs. Ampullary vesicles are in bilateral clumps, about 3 deep postero-ventrally, anterodorsally and around the anterior end of the trunk. Both otolith and ocellus are present.

Remarks

Colonies from Green Pools (AM U3896, see below) assigned to this species by Kotl (1957) are specimens of Dumus, having single zooids in each lobe, and 4 rows of stigmata.
Superficially, colonics of R. pedunculata re-
semble R. cornuta, R. papillata, and R. asymmetrica as well as Monniotus spp. and Dumus spp. However Dumus and Monniotus are distinguished by having only one zooid in each lobe; and the other Ritterella spp. have differently organised colonial systems, the shapes of the terminal free ends of each lobe being different (see R. cornuta, REMARKS). Ritterella pedunculata can also be distinguished from other Ritterella spp. by details of the branchial sac - from R. asymmetrica and R. cornuta by the 5 simple rows of stigmata, and from the latter and R. papillata by the absence of branchial papillae.
The specimens with both parastigmatic vessels and a branchial papillae on each transverse vessel reported from St. Vincent Gulf by Kott (1972a) are juveniles of Monniotus australis. There are neither branchial papillae nor parastigmatic vessels in R. pedunculata. Larvae from Elliston Bay (Kott 1975, Fig. 1) have a larval trunk 0.6 mm long as do the newly recorded larvae from Bruny I. (MV F57793).

Genus Dumus Brewin, 1952

Type species: Dumus areniferus Brewin, 1952.
Only 2 specics are known. Colonies are narrow, sandy, branched vertical lobes, the terminal branch containing only a single zooid, with 4 rows of stigmata, and a smooth or mulberry-like (but never folded) stomach wall. Possibly associated with the reduction in size of the branchial sac, there are no branchial papillae. Parastigmatic vessels sometimes are present. Testis follicles are in a single longitudinal series, relatively numerous eggs (10 about 10) are present in the ovary and up to 12 cmbryos at a time are incubated in the atrial cavity. Many species of Ritrerella (e.g. R. pedunculata) have similar colonies but otherwise are separated from Dumus by their more numerous rows of branchial stigmata, embedded zooids and longitudinal stornach ridges.
Ncvertheless, the relatively large numbers of eggs in the ovary and the number of embryos incubated in Dumus suggest a more primitive condition than in Ritterella (in which not more than 3 cmbryos at a time are incubated in the atrial cavity).

The only species known are the type from New Zealand and temperate Australian waters, its northern limit in Moreton Bay), and Dumus dumosus (Monniot, 1987) from New Caledonia, a species originally assigned to the genus Euherd-
mania. It has neither the long oesophagus nor the folded stomach wall, nor the characteristic larval adhesive organs of Euherdmania. Its colonies are similar to those of D. areniferus, from which it differs in the presence of scattered circular swellings in the stomach wall and the parastigmatic vessels (as in R. arenosa, R. asymmetrica, R. tokioka, R. yamazii, and occasionally in Condominium areolatum, see above).

Dumus areniferus Brewin, 1952
(Fig. 11)
Dromus areniferus Brewin, 1952, p. 453. Kott, 1976, p. 58. Miliar, 1982. p. 43.

Ritterella herdmania Koti, 1957, pi 102 (pari, specimens from Green Pools).

DISTRIBUTION

New Records: South Ausiralia (Price I., QM GH4152). Victoria (Portland, QM GH92). New South Wales (South Ulladulla, QM G8585). Queensland (Moreton Bay QM G12725 GH3901 GH3903 GH4247).
Previously Recorded: Western Australia (Green Pools - AM U3896). Victoria (Westermport - MV H286 QM G7509, AM Y1980 Kott 1976). New Zealand (Otago - Brewin 1952).
The range of this species, in Queensland and New Zealand, suggests a Gondwana component of the fauna.

DESCRIPTION

External Appearance: Colonies are aggregations of long, narrow, sandy, branching vertical stalks up to 6 cm long, joined to basal common stolons. The vertical stalks adhere to one another by the sand that covers them to form sandy platforms. The free ends of each terminal branch are expanded into a short bulb bent ventrally at right angles to the long axis of the stalk, onto which the zooids open. A single zooid is in each terminal branch of the colony. The branchial apertures face downwards from the front of the bulb and the atrial aperture upwards from the top. The thorax is slightly flattened dorso-ventrally. The stalks all taper slightly toward the base:
Internal Structure: Zooids are up to 6 mm long, and thread-like, at least half of the length being posterior abdomen. Six shamply pointed lobes surround each aperture. The body wall is muscular with 10 external longitudinal bands extending obliquely across the thorax froin the branchial siphon to the postero-dorsal corner and then along the whole length of the zooid. From 10 to

16 stigmata are in each of 4 rows. Neither branchial papillae nor parastigmatic vessels are present. The smooth-walled almost cylindrical stomach occupies the middle third of the abdomen. The anal opening is halfway up the thorax. The ovary in the anterior part of the posterion abdomen has up to 10 eggs. Long and oval or, when compressed by contraction, circular to pearshaped testis follicles are in a single series, although with contraction they tend to become bunched. Kott (1976) reparted testis follicles confined to the posterior half of the posterior abdomen, but in the newly recorded specimens from South Australia and Queensland they occupy its whole length.

Up to 12 embryos are crowded in the atrial cavity of specimens collected in July (QM G8586) and August (QM GH3901 GH4247) from Moreton Bay, and November (AM Y3896 Y1980) from Green Pools and Westempon. The larval trunk is 0.4 to 0.5 mm long. The 3 adhesive organs have narrow stalks and small, shallow cones of secretory cells. They alternate with median ampullae, each of which has a lateral ampulla near its base. On each side, there also are clumps of postero-ventral and antero-dorsal ampuilary vesicles, the Jatter extending around the anterior end of the trunk, outside the lateral ampullae. The tail is wound about two-thirds of the way around the trunk. An otolith and ocellus are in the cerebral vesicle. The adhesive organs in this species are particularly small, and the robust octodermal ampuillae appear to be the most important structures at the anterior end of the trunk, and they have a cap of enlarged epidermal cells simubar to those in Polyclinum.

Remariks

The greal geographic range of this species is not reffected in a variable morpbology, for there is little variation, even between Australian and New Zealand populations: Although the larva is smaller, and lacks the lateral ampullae, it generally resembles the larva of Ritherella pedunculata.

Family EUHERDMANIIDAE Ritter, 1904 emend.

Zooids are either separate or embedded, with 6 -lobed atrial openings directly to the surface. A long oesophagus opens into a small, Iongitudinally fidged stomach at the posterior end of the abdomen. The wide rows of stigmata (50 to 100 per row) vary in number from 5 to 20 . Neither
parastigmatic vessels nor branchial papillae are present. The anus opens in the base of the atrial cavity. Gonads are bunched, in a relatively short abdomen. Fertilisation takes place at the proximal end of the oviduct and embryos are brooded in the oviduct. Larvae have long pyenoclavellid-type inverted tubular adhesive organs.

Usually longitudinal and oblique muscles from the branchial and atrial siphons cross the thoracic wall to join into a wide band along each side of the ventral border, and continue onto the abdomen and posterior abdomen in 2 wide bands. In E. virrea Millar, 1961 a dorsal rather than ventral band of muscles is reported and in E. morgani

FIG. 11: Dumus areniferus - \mathbf{a}, \mathbf{b}, parts of colonies (\mathbf{a}, QM GH4152; b, QM GH3901); c-f, zooids and parts of zooids (QM GH3901); g, larva (AM Y1980). Scales: a, 2 mm ; b, c, 5 mm ; d-f, 0.5 mm ; g, 0.1 mm .

Millar and Goodbody, 1974 both ventral and dorsal bands are present. Transverse muscles have been reported only for E. fasciculata Monniot, 1983
Pycnoclavellidae (see Kott 1990, p.66) have the same tange in colony form as the present family, having zooids completely or partially embedded, or separate from one another for most of their length. Pynnoclavellidae also resemble the species of the present family in the position of the anal opening, the long oesophagus, fertilisation at the base of the oviduct and the same type of larval adhesive organs.
The principal characters distinguishing Euherdmaniidae from Pycnoclavellidae are the 6 -lobed (rather than smooth) apertures, and the relatively large gonads sometimes located in a poslerior abdomen (rather than in the gut loop). The relationship between the farnilies seems to be closer than either has with other families.
Euherdmania is the only known genus of the family Euherdmaniidae,
When a posterior abdomen is rot present (Euherdmania dentatosiphonis, E. digitata and E. translucida n.sp.), difficulties can arise in separating certain species of Euherdmania from Polycitor. Both have a long oesophagus and lobed apertures. The presence of larvae can resolve the difficulty as those of Euherdmania have long, inverted tubular (pyenoclavellid-type) adhesive organs, In the absence of larvac, reliance must be placed on the width of the thorax, position of the anal opening, and other details of the siphonal lobes to separate the genera.

Genus Euherdmania (Ritter, 1904)

Type species: Euherdmania claviforinis (Ritter,

 1903).The genus is characterised by its separately opening zooids with long vesophagus and folded stomach wall.
In addition to the new species described below. the known species of Euherdinamia are:
Euherdmania gigantea (Van Name, 1921) from Florida has embedded zooids and conspicuously serrated lobes around the apertures. Kolt (1981) argued that the denticulate lobes of the apertures may indicate synonymy with Stomozoa. However this is denied by the position of the gonads and the presence, in E. gigantea, of a series of embryos in the abdominal part. of the oviduct (see Millat 1977) - as in Euherdma-
nia but not in Stomozoa. The serrated lobes around the apertures probably occur in parallel in these taxa. Millar (1977) re-exatrined the holotype of E. witrea Millar, 1961 From the Brazilian coast and thought that it may be conspecific with E. gigamea. A doubt remains, however, since the bolotype zooids described (Millar 1961) have a dorsal rather than the ventral muscle bundle present in E. gigaritea.
Euherdmania dentatosiphonis (Millar, 1975) Irom the western Pacific, was thought to be a synonymo of E. digilata (see Kou 1981), However, it differs from E. digituta in having similar serrated lobes around the apertures to those in E gigantea,
Euherdmania morgani Millat and Goodbody, 1974 differs from E. gigmtea in its shallow and smooth (rather than serrated) oral ond atrial lobes, its doreal, as well as ventral, thoracic muscles, and zooids opening around a stalked, fan-shaped head rather than on top of a thick, sessile upright colony.
Euherdonania digitata Millar, 1963 from north-western Australia and the Western Pacific (Kotr 1981. Tokioka 1967, Nishikawa 1984a) and southern Ausuralia (see below) has separate zonids joined by hasal stolons or common lest. Occasionally is gonads are in the gut loop rather than in a posterior abdomen, It differs from E. claviformis in that the test is not sand-covered and the lobes of the colony are thicker. The larvac have the characteristic inverted tubular adhesive organs.

Euherdmania solida Millar, 1953 from the Gold Coast (Ghana) differs from E. digitatu only in having partially embedded zooids, its body musculature is like that of E. digilata and E. viltea.

Euherdmaniu rodei Perees, 1949 from the Gold Coast (Ghama) has fewer stomach folds than E. solida and completely embedded zobids.
Euhendmantia clawformis (Ritter, 1903) from California kas, like Mannionus spp. long, närow, sandy lobes, each containing a single zooid, united basally. It is distinguished from zooids of the latter genus by the long oesophagus characteristic of Eutherdmania. A related species from Senegal, E. claviformis: Pérés, 1949 has 15 to 16 rows of stigmata rather than 8 to 12 found in the Californian species. Euherdimania ctavifarmis: Monnit, 1987 from New Caledonia with 18 rows of 40 stigmata is wrongly assigned (see E. digitala below).

Euherdmania fascichlata Manniot, 1983 from Guadaloupe has long, narrow branching stalks with the ihoraces, atleast, separate from one another Sand is present only on the base of the colony. Longitudinal and transverse muscles form a meshwork and the
longitudinal ones go to the end of the posterior abdomen. There are 12 io 17 rows of up to 30 stigmata. The anterior row of stigmata curves anteriorly along dorsal line. The trius opens at the second-last row of stigmata. The oesophagus is long, and the stomach is in the posterior end of the long abdomen. The species. is separated from E. claviformis by its more numerous stomach folds (10 rather than 6), and its naked test.

Eukerdmania areolata Millars 1978 from the western Atlantic (Guyana shelf), has long. namow, sandy lobes, each of the terminal branches containing a single zooid. These colonies resemble E. clavifarmis but they have more branches. The stomach has internal folds which are not obvious externally and distinguish the species from E. clavformis and E. fasciculata.

Thus, there appear to be 3 groups of species in Euherdmania, viz.:
a.Gigantea group with separate or embedded zooids, and pronounced serrations on siphonal lobes (E. gigantea, E. dentatosiphonis, E. translucida $\mathrm{n} . \mathrm{sp}$. and possibly E. vitrea).
b.Digitata group with separate or embedded (partially or completely) zooids, gelatinous sandtree test, and shallow, smooth siphonal lobes (E. digitata, E. solida, E. rodei, and probably E. morgani). Distoma pulchra Ritter, 1901 (©Sigillinaria putchra: Van Name, 1945) is a likely member of this group.
c.Claviformis group with separate zooids in long, narrow, sometimes sandy, sometimes branching stalks, and pronounced but not serrated siphonal lobes (E. claviformis, E. arcolata and E. fasciculata). The colonies of this group of species resemble those of many Ritterellidae, and Monniotus spp.
Larvae are known for E. vitrea (sce Millar, 1961), E. claviformis (see Trason 1957); E. digirata (see Millar 1963, Kott 1981 and below). The larvae of E. gigantea, E. rodei, E. dentatosiphonis, E. translucida n.sp., E., areolata and E. solida are not known.
Euherdmania custralis Kott, 1963 is incorrectly assigned having a short oesophagus, branchial papillae on the transverse branchial vessels, parastigmatic vessels, a stomach wall areolated but not longitudinally ridged, and a polyclinidlike larva with ectodermal ampullae and vesicles, and stalked adhesive organs (see Monniolus). Euherdmania dumasa Monniot, 1987 is also incorrectly assigned (sce Dumus).
Species of Euherdmania are known mainly
from tropical oceans and generally they have relatively restricted ranges. Euherdmania translucida n.sp. from South Australia related to E. dentatosiphonis, and the eastem Pacific E. claviformis are the only records from temperate waters.

Key to species of Euherdmania recorded from Australia

1. Siphonal lobes serrated 2

Siphonal tobes not serratedE. digitata
2. Thoracic muscles not more than 3 ; colonial
E. dentatosiphonir

Thoracie muscles more than 3 ; solitary
E. iranslucidan.sp.

Euherdmania dentatosiphonis (Millar, 1975)
(Fig. 12)
Clavelina dentarasiphonis Millar, 1975, p. 211.

Distribution

New Records: None.
Previousiv Recorded: Qucensland (Coral Sea, Millar 1975).
The single small colony was taken at 100 m .

DESCRIPTION (after Millar 1975)

EXTERNAL APPEARANCE: The single small colony consists of 4 narrow-stalked, club-shaped lobes attached to a basal stolon. Each lobe contains a single zooid, although in 2 they are degenerate or developing. The largest lobe is about 2 cm high. The test is gelatinous and translucent, the thoracic part delicate and the stalk rather firm. The branchial aperture is terminal, but turred ventrally, and the atrial aperture is on the dorsal surface. Zooids are pink in preservative and can be seen through the test.
Internal Structure: 'The larger zooid is 6 mm when removed from the test. Each of the 6 lobes of each aperture is denticulate. The anterior lobe of the atrial aperture and the dorsal lobe of the branchial are broad. There is a half velum inside the 5 smaller lobes of each aperture which parly occludes the opening. The branchial tentacles, numbering about 45 are on the edge of a velum at the base of the branchial siphon. There are 3 wide oblique muscle bands on each side of the thorax, extending from the base of the atrial siphon to the postero-ventral corner of the thorax. These join into a single band running along the
ventral surface of the abdomen, one on each side of the mid-line. Millar (1975) found 16 rows of stigmata altemating with high transverse bran-

FIG. 12: Euherdmania dentalosiphomis (after Miltar 1977) - a, part of colony: h, zooid contracted; \mathbf{c}. lobes of branchial aperture. Scalcs: a, 1 cm ; b, c, 1 mm .
chial vessels. Triangular, pointed dorsal languets are present on the dorsal sinus. The abdomen of Millar's specimen may have been mutilated, as there was no sign of either stomach or gonads. although there is an entire gut loop.

Remarks

Kott (1981) believed that this species was a junior synonym of Euherdmania digirata Millar. 1963. which is known from the Western Pacilic (Tokioka 1967, Kott 1981), north western Australia (Millar 1963) and southern Australia (see below). However, as well as lacking the denticulate lobes of the present species, E. digitata differs in the arrangement of its body muscles. including the presence of transverse thoracic museles. The present species has similar siphonal lobes to Euherdmania translucida n.sp. from southem Australia. However, E. Itunslucida has a larger zooid, more numerous thoracic muscles, and a solitary habit, all of which distinguishes it from E. dentatosiphonis. Further, the different locations in which they have been found and the discontinuity in their ranges is a compelling argument in favour of separate species.
Euherdmania gigantea (Van Name, 1921). from the western Atlantic (see Millar, 1977), has similar denticulate lobes and half velum in the aperture. It differs from the present species mainly in the form of the colony with its embedded zooids, and its more numerous obliguc thoracic museles (joining the usual bands each side of the mid-ventral line).
Millar (1975) thought that the upper part of the corrugated tuhe in the abdomen of the type specimen of E. dintatosiphonis may be the stomach. and Kott (1981) thought that the presence of a stomach at more or less the same level in the abdomen of Euherdmanid digitata confirmed Millar's view. However it seems more likely that the abdomen of the type of E dentatosiphonis has been damaged, and that it will be found to have as longitudinally folded stomach in the posterior part of the abdomen, as in all known Euherdmania spp., including species such as E. translucida n.sp. and E. gizantea which have other characters in common.

Euherdmania digitata Millar. 196.3
(Fig. 13. Plate 2e)
Euherdmania diginald Millar, 1963. p. 698. Tokioka, 1967, p. 58. Kott. 1981, p. 154. Nishikawa, 1984:, f. 113. Monniot and Monniot, 1987, p. 83.

Euherdmania "laviformis: Monniot. 1987, p. 501.

DISTRIBUTION
New Records: South Australia (Investigator Group, QM GH4920 GH4183). Queensland (Capricorn Group, QM GH2455 GH4919 GH4921-5; Lizard I., QM G9772 GH2442).

Previously Recorded: Western Australia (Cape Boileau - Millar 1963). New Caledonia (Monniot 1987). Fiji (QM G12469-70 GI2867-8 Kott 198I). Palau Is (Tokioka 1967). Ponape (Nishikawa 1984a). Moorea, Tahiti (Monniot and Monniot 1987).

FIG. 13: Euherdmania digitata - a, part of colony (QM GH4920); b, single zooid in test (QM GH4183); c-e, zooids at various states of contraction (c, d, QM GH4920; e, QM GH4183); f, larva (QM G9772). Scales: a, $5 \mathrm{~mm} ; \mathrm{b}, 1 \mathrm{~mm} ; c-e, 2 \mathrm{~mm} ; f, 0.2 \mathrm{~mm})$.

DESCRIPTION

EXTIERNAL APPEARANCE: Colonies are up to 4cm in maximum extent, consisting of separate zooids up to 3 cm high attached to a tangle of basal stolons or solid basal test. The lower one-thind of each upright zooid is covered with very firm test, which becomes progressively softer and more transparent toward the upper (thoracic) part. The upright staiks sometimes branch along their length.

The thoracic test has a thickening each side of the terminal branchial aperture and another median one just postero-dorsal to the subterminal atrial opening.

The living specimens from the Capricorn Group are a clear, bright canary-yellow, and one of the zooids (From QM GH4925) had Prochitoron symbionts evenly and densely distributed around, and in the lining of, the branchial siphers. Yellow pigment is especially dense in both siphon linings.

The rim of each of the apertures is divided into 6 shallow lobes, each lobe with a yellow (light sensitive ocellus?) pigment spot in the centre. The branchial aperture often is inclined ventrally, and the atrial aperture directed upwards.

INTERNAL STRUCTURE: Zooids are long (up to 3 cm) and narrow. The thorax is about a quarter of the length of the abdomen. The posterior abdomen, only slightly shorter than the abdomen, terminates in several blunt vascular processes. Up to 20 fine parallel longitudinal thoracic muscles, which when contracted form 8 to 10 wide bands, cross the thorax obliquely from atrial and branchial apertures to the endostyle, and continue along each side of the mid-line on the abdomen and posterior abdomen in a pair of wide ventral bands. A layer of fine transverse muscles lies beneath the Jongitudinal muscles on the thorax. About 20 very slender branchial tentacles are in at circle at the base of the branchial siphon. About 16 to 18 rows of stigmata have approximately 50 to 60 stigmata per fow in the anterior rows. Shorter sows with about 30 stigmata are at the posterior end of the branchial sac. Transverse vessels are broad, flat membranes projecting between the rows of stigmata. These expand into long, pointed dorsal languets over the dorsal sinus.

The gut loop is long and narrow, with a long oesophagus and a narrow stomach at the posterior end of the descending Jimb. The stomach wall has from 8 to 12 longitudinal irregular, or oblique and sometimes shallow folds. The anal opening has
two smooth lips and opens in the base of the atrial cavity.

Gonads are in the anterior part of the posterior abdomen, just behind the stomach. They consist of a cluster of pyriform male follicles, surrounding 3 or 4 oocytes. In one of the specimens there are also orange eggs in the oviduct and in others a developmental series of embryos is in the oviduct from just distal to the stomach to the atrial cavity. Embryos are present in the oviduct in June from Lizard I. (QM G9772), but were not present in October af Heron 1. Larvae have a long (1.0 mm) trunk, with 2 long inverted tubular adhestve organs, an ocellus and an otolith. The tail is wound about halfway around the trunk. The postero-ventral part of the trunk is very yolky.

REMARKS

The zooids and larvae of the north-western Australian (Millar 1963), and Palau Is (Tokioka 1967) specimens deviate from the present ones only to the extent that a lesser number of stigmata (15) was recorded for the Palau Is specimen. However, Tokioka was uncestain about the numbers he recorded and it is possible that he was misled by the narrow thorax.

Monniot (1987) assigned New Caledonian colonies (an unspecified number) to the indigenous Californian E. claviformis, which has fewer rows of stigmata and narrower thoraces. There is neither morphological nor geographic grounds for this assignation. Larvae are the same size as the other western Pacific specimens. It is presumed that the 2 adhesive organs recorded by Monniot are the usual inverted tubes characterislic of this genus.

Kou (1981) tried to establish a synonymy between the present species and E. dentatosiphonis Millar, 1975. She thought the denticulate siphonal lobes of E. dentatosiphonis were not essentially different from the smooth lobes of the Fijian specimens of E. digilata. However, comparison of the Fijian with the newly recorded Australian specimens shows them to be similar to one another, and distinct from E. dentatosiphonis. The larvae and embryos being incubated in the oviduct of Fijian and Australian specimens are also identical; and re-examination of the Fijian specimens has shown that although only 20 stigmata were recorded, at least twice that number is present.

Of concem to the interpretation of intrageneric phylogeny of these taxa is the variation in the position of the gonads, which are in the abdomen (in the Fijian specimens), or in a posterior abdo-
men. However, although the former have embryos in the oviduct, and tubular larval adhesive organs like Pycnoclavella, their siphonal lobes indicate that the specimens are members of the genus Esherdmania, and in view of their other characters, they appear to be specimens of E. digitata.
Variation in the number, ofientation and depth of the stomach folds apparently is a characteristic of this species, Millar (1963) and Kott (1981) reporting 12 folds, Tokioka (1967) reporting 8. and Monniot (1987) 6 to 10 but mostly 8.

Euherdmania translucida n.sp. (Fig. 14. Plate 3a)

Distribution

Typf Locality: South Australia (Sir Joseph Banks Group, Marum I., N Point, offshore, in sand and tootthat of Posidonia, 8 m , coll. W. Zeider 11.1.84, holotype SAM E2092, paratype SAM E2056; Sir Jhseph Banks Group, Reevesby L, NW Point 150-200m, coll. W. Zeidler, paratype SAM E2093).

Furtier Records: South Australia (Spencer Guif, Banks and Investigator Groups, QM GH2310, SAM E2091; Yorke Peninsula, SAM E2455; Kangaroo 1., SAME2529).

Description

EXTERNAL APPEARANCE: Individuals are solitary, up to 4 cm high. They have hard, long, narrow stalks with basal branching raot-like extensions. Only 3 specimens (SAM E2056 E2092 E2455) are complete. The others have been cut off across the long oesphageal neck and the posterior end of the abdomen is missing. The base of the stalks of the holotype and one paratype (SAM E2056) expand into a holdfast amongst the Posidonia root mat. The firm stalk has whitish, translucent test internally, and is leathery externally. The terminal expanded balloon-shaped thoracic part, occupying about one-fifth of the total Iength, has thick, soft, and glassy test containing spherical test cells which are crowded together forming spots about 0.5 mm apart. The branchial aperture is terminal and the atrial aperture subterminal. Each aperture is surrounded by 6 large, rounded petal-like lobes.
Photographs of living specimens show them to have very transparent thoraces, with bright spots which may be light sensitive at the tips of the siphonal lobes.
Internal Structure: The zooid occupies the whole length of the stalk, with only a fine blood vessel extending into the basal holdfast.

Each aperture is surrounded by 6 flat lobes. A crescent-shaped half velum is around the ventral side of the lumen of the branchial aperture, and another is inside the dorsal side of the atrial aperture. The adjacent lobes of the respective apertures, viz., the dorsal lobe of the branchial and the ventral (or anterior) lobe of the atrial aperture are especially wide, each containing parallel longitudinal muscles and fringed with ubout 12 pointed tongues. The inner faces of thesc 2 large, fringed lobes are continuous with the lining of the pharyngeal and atrial cavities respectivelyContinuity between the linings of these cavities and the inside surfaces of the slightly smaller lateral lobes (fringed with 6 to 8 points) on each side of the large median lobes is interrupled by the ends of the crescent-shaped vela. Outside the widest part of the vela, the tip of the opposite medran and lateral lobes are divided jnto one or 2 long points.
A sphincter muscle in each velum seems to derive its fibres from the longitudinal thoracic muscles. Seen in seetion, the velum appears to be a fold of the body wall at the base of the siplons. The branchial velum in particular projects from just in front of the branchial tentables, and its sphineter muscle may be homologous with that usually found bencath the tentactes. There are 12 strong longitudinal thoracie muscles, viz. 4 branchial contributing fibres to the branchial velum, 3 dorsal contributing fibres to the 2 large median siphonal lobes, and 3 atrial contributing fibres to the atrial velum. These muscles extend obliquely roward the postero-ventral comer of the throrax, and join into a wide band on each side of the long. oesophageal neck, terminating at the posterion end of the abdomen. Transverse muscles were not detected.
About 40 relatively long, slender branchial tentacles are of various sizes. The dorsal gland is Jarge, and a fleshy dorsal tuberele has a vertical opening in a V -shaped peritubercular area that projects into the pharynx so that the opening of the neural duct is directed forwards, toward the branchial aperture. There are 20 long rows of relatively short stigmata, with 100 or more stigmata in the anterior rows, although the rows become shorter posteriorly. The transverse vessels between the rows of stigmata are very wide flat membranes. Over the dorsal sinus these expand into triangular languets with long points that coil over to the tight side. Neither parastigmatic vessels, nor papillae are on the transverse vessels.
The oesophageal neck is long and staight, and the abdomen swells into an onion-shaped hulb
only at the posterior end. Both the oesophagus and rectum are transversely wrinkled. In the only 2 specimens with a complete abdomen, the stomach, and other parts of the gut loop, have very thin walls and are packed with trophocyte cells. The abdomen appears to be degenerating and possibly the body organs are being resorbed. The stomach

FIG. 14: Euherdmaniu trunshucida n.sp. - a, zooid in test (holotype SAM E2092); b, c, thoraces showing lobes of apertures and muscles (SAM E2093 F2091); d. part of dorsal lamina (SAM E2Oy1). Scales: an $5 \mathrm{~mm} ;$ b, c. 2 mm : d, 0.5 mm .
is almost cylindrical with about 6 longitudinal folds. There is no apparent posterior abdomen. The pole of the gut loop curves around in the posterior end of the abdomen. The anal opening is at the posterior end of the atrial cavity. There were no gonads detected in these specimens; nor were larvie present.

REMARES

A number of characters can cause confusion in identifying this species. There are certain solitary Clavelina (e.g. C. meridionalis, C. ostrearium, C. dagysa) that superficially resemble the solitary individuals of E. Pranslucida. but they have a characteristically conspicuous vascular stolon and plain-rimmed apertures the present species has only a small inconspicuous vascular stolon and lobed apertures). The size of the pharynx, the number of stigmata as well as the number of rows, the absence of a posterior abdomen and the large siphonal lobes suggest Sfomozoa but, in addition to their colonial habit, Stomozoa spp. have complete rather than partial siphonal vela, the socalled ocelli are on each side of the siphonal lobes rather than in the tips as they are in the present species, and the oesophagus is not as long as it is in the present specjes.
The long abdornen, lone oesophagus and anus in the posterior end of the atrial cavity are characteristic of both Pycnoclavella and Euherdmamia. Nevertheless, the species seems closer to Etherdmanio than Pycnoclanella because of its large pharynx with numerous rows of stigmata, folded stomach. siphonal lobes. and muscular velum (which resembles that of Euherdmania dentanosiphonis Millar, 1975). Only its solitary habit, larger zooids and more numerous thoracic muscles distinguish the present species from E. dentatosiphonis. Thus, allhough the gonads are not always in a posterior abdomen, Euherdmania seems to be the most appropriate gerus for this species.

Family PSEUDODISTOMIDAE n. fam.

The fanily is characterised by its colonies with embedded, separately opening zooids with 6 well defined lobes around the atrial and the branchial apertures, 3 rows of stigmata with the anterior row on cach side continuing anteriorly along eacls side of the mid-dorsal line fertilisation in the oviduct, and a generally smooth stomach wall with 4 broad longitudinal compartments or quadrilateral in outline. Generally the oesophagus is short and the stomach is in the middle third of the abdomen.

However, a group of species, viz. P. arborescens, P. awrewm, P. novaezelandiae, P. opacum and Anadistoma n.gen. (see below) have a longer oesophagus, with the stomach two-thirds to threequarters of the distance down the abdomen. The curved heart is in the posterior tip of the posterior abdomen. Gonads are in longitudinal series or bunched in the long posterior abdomen. The vascular processes from the tip of the posterior abdomen ate moderately long (longer than those in the Polycitoridae) and longitudinal muscle fibres (from the muscle bands on each side of the abdomen) sometimes continue onto them-Larvae are large, with a trunk often exceeding 1.0 mm in length. The adhesive organs are large, with a deep, wide, eversible axial platforms which, when everted, form large thin-walled balloonlike structures in the anterior mid-line. They appear to lack the tall columnar cells that comprise the axial elements of the adhesive organs of miost taxa (see Cloney 1977, Turon 1991).
Apart from the presence of gonads in a posterior abdomen, zooids resemble those of Sigillina in having 3 rows of stigmata, a relatively sbort ocsophagus, smooth stomach, a long vascular stolon sometimes with longitudinal muscle fibres on it, fertilisation and incubation of the especially large embryos in the oviduct or in a brood pouch, and wide platforms of adhesive cells in the deep epidermal cups of the large, eversible adhesive organs, Further, in Anadistoma n.get. transverse muscles are present on the thorax as in Sigillina.
Zooids are smaller than those of Sigilina, and, like those of Eudistoma and Pycnoclavella, have the anterior row of stigmata deflected anteriorly. This could be the result of convergent evolution associated with size reduction and does not necessarily indicate a direct relationship with Pycnoclavellidae. Nevertheless an alternative hypothesis for the origin of the Pseudodistomidae is from a pyenoclavellid ancestor by shortening of the gut loop, leaving gonads and heart in the posterior abdomen, while the tubular larval adhesive organs reduce in length and partially evert. Evidence against the pycnoclavellid relationship is the position of the anus halfway up the short thorax (not at the posterior end of the arrial cavity as in Pycnoclavella), and the 6 -lobed rather than smooth apertures.
The monotypic genus Citorclinum Monniot and Millat, 1988, containing a single species Ci torclinum laboutei Monniot and Millar, 1988 known only from the New Caledonian lagoos, appears to belong to this family. It has 3 rows of stigmata, the anterior row inclined forward along
the mid-dorsal line, a smooth-walled stomach halfway down the abdomen, and the testis follieles in a long series in the posterior end of the posterior abdomen. As in Pseudodistoma incubation is in the abdominal part of the oviduct. The large larva (trunk about 1 mm long) has 2 elongate everting adhesive organs in the mid-line. These are hollow, without columnar cells, and are like those of Pseudodistoma rather than Sigillina, or other Holozoidae, Polycitoridae and mont families of the Aplousobranchia. The genus is distinguished from Pseudodistoma by the withdrawal of the heart and ovary to the abdomen with the gut loop, leaving the testes in the posterior abdomen.
In addition to Citorclinum and Pseudodistoma the family contains the monotypic new genus Anadistoma. The latuer has uransverse thoracic muscles and a longer oesophagus than Pseudodistonu.

Gernus Pseudodistoma Michaelsen, 1924

Type species: Pseudodistoma cercum Michaelsen, 1924

Brewin (1958) on the basis of what she called 'parallelism in classification' assigned species to gerera solety on the presence or absence of stomach folds - those with stomach folds being in Psendodistoma. This definition is based on the type species which has a quadrate stomach or one partially divided into 4 chambers. True stomach folds do not occur. Brewin's definition must also be amended to exclude Ritterella in which true stomach folds do occur, and which has othes characters separating it from Pseudodistoma.

Species of this genus appear to be less prolific than most ascidians, Gonads apparently mature for only a short time, and were not seen in many of the examined specimens, Further, the ovaries are small, and in most species only a single ovum develops at a time. The testis follicles are confined to the posterior, middle, or anterior part of the posterior abdomen, and never nccupy its full length. Fertilisation appears to be at the base of the oviduct, for embryos are found being incubated in the posterior abdomer in P. oriens n.sp. and P. kanako, and in the abdomen in P. arborescens, P. aurewn, P. opacum, P. cereum, and P. brieni. In the last 2 species embryos are lined up in the abdominal part of the oviduct in a developmental sequence. In the new Australian species P. acuatum л.sp., P. pulvinum n.sp, and P. grac-
TABLE 4. Summary of characters of species of Pseudodistoma recorded from Australia

Species	$\underset{\text { Range }^{\text {en }}}{\text { Biogephic }}$	Range anticlockwise around Australia	Colony	Sand (embedded)		Length vascular stolon	Stigmata: maximum numberl row	Gonads: ${ }^{\delta}$ position ${ }^{\circ}$ relative to ${ }^{\circ}$ in posterior abd.;	Embryos: number; site of \qquad	Larva: trunk length (mm); adhesive organs	Other
P. gracilum n.sp.	A.te,tr	Kangaroo 1. to Coral Sea	sessile cushion	none	middle	moderate	30	middle;anterior	$\begin{aligned} & 1 ; b p \\ & \text { stalaks } \end{aligned}$	1.75;short	mucus-like test
P. pulvinum n.sp.	A,te	*	\cdots	\cdots	"	\cdots	30		"	$?$	-
P. aureum	WP,tr	$\begin{aligned} & \text { Heron 1, to } \\ & \text { Fiji } \end{aligned}$	sessile cushion - mushroom	\cdots	posterior	short	25	posterior;anterior	1-4;6	0.63-short stalks	-
P. inflatum n.sp.	A.te	NSW	"	centre of colony	"	"	20	anterior;amongst	?	$?$	sometines surface lobed
P. pilatum n.sp.	A,te	Gt Australian Bight	stalks branched along length	"	middle	long	20	posterior,anterior	?	?	shor, flat heads
P. acuatum n.sp.	A,te	,	"	layer beneath surface	.	*	8	posterior;?	7;bp	?	pointed heads
P. australe	A,re,r	$\begin{aligned} & \text { Exmouth Gulf } \\ & \text { to Port } \\ & \text { Phillip Bay } \end{aligned}$	one or more lobes sessile or stalked joined basally	in stalk	"	${ }^{*}$	25	posterioranterior	1;bp	1.0;shor stalks	few, short lateral larval ampullac
P. oriens n.sp.	A.te	Cockbum Sd to Port Phillip Bay	"	sometimes in stalk	\cdots	\cdots	30	*	1-2;b	1,35; sessile	"
P. candens n.sp.	A,te	Abrolhos to Pearson 1.	stalked heads	"	\cdots	"	25	anterior,amongst	1:b	1.5; long stalks	numerous long lateral larval ampulla

[^2]ifum r.sp. and in f^{2}. adstrale, P cymusense, P. kanoka and P. fragile, incubation of embryos is completed in a brood pouch constricted from the top of the abdomen, near the postero-dorsal corner of the thorax
Brewin (1958 p.444) refers to 'bud like masses' that lie beneath the zonids of Pseudodistoma cereum: and in the present collection Pseldodistoma oriens n.sp. has juvenile replicate zooids in the stalk of a developing colony lobe. It therefore seems possible that replication does not involve the abdomen. However at this stage it is not clear whether it involves strobilation of the posterior abdomen (as in Aplidium spp.), or the posterior vascular stolon (as in Holozoidac).

Colonies of Pseudodistoma often (though not always) are stalked, with the zouids regularly arranged, the atrial apertures opening toward the top of the colony or the centre of the upper surface, and the branchial apertures toward the stalk or the outer margin. Colonies thus have colonial. but not cloacal, systems.

The zooids of most species of Pseudodisfona are basically similar to one another and this has resulted in confusion in their taxonomy. The zooids are, moreover, very muscular and preserved specimens usually are so contracted that details of their morphology, such as the numbers of thotacic muscle bands and stigmata, are obscured. When relaxed the posterior abdomen is long and narrow, but it is short and thick when contracted. There often is a vascular stolon of appreciable length with some longitudinal musele fibres on it. Male follieles, when present, are either clustered in the posterior, middle or anterior third of the posterior abdomen, or spread out in longitudinal series. Sometimes the small uvaries are surrounded by the clustered male follicles but in other spectes they are anternor to them. The gut loop is very conservative - the quadrate stomach and rectal valve being present in most species (P. fragule being the exception). However there is some variation in the Iength of the oc sophagus (sec farnily discussion, ahove) At this slage. the larvae (which vary in numbers of ampullac), the position of the gonads, and the form and colour of the colony constitute the principal chapacters distinguishing species of this genus lrom one another.

Only one known species, Pseudodistoma aureum has a character that implies a polyphyletic origin for the genus, viz. tufts of columnar cells in the adhesive organs of the unusually small larvac rather than the everting, bal-loon-like organs of other species.

The majority of species are known from either Mediterranean, Japanese or southem hemisphere temperate waters. The type species is recorded from Now Zealand. The only tropical species known are P. brieni Pérès, 1949 from Senegal and P. aureum (Brewin, 1957) from the Westem Pacific (see below).

Although only one species from Australia (P. australe Kott, 1957) was previously regarded as indigenous, revisuon of the material has shown that all Australian species are (Table 4). As in Sigillina, it is probable that gene flow for many species is inhibited by the relatively large and few larvae, longer incubation and shorter free-swimming life, and the probability that the relative size of the trunk and tail are unlikely to conhance a long free-swimming life.

Key to species of P seudodistoma reconded from Australia

1. Test soft.mucus-like \qquad P. grucilitm n.sp. Test firm, nat mucus-like 2
2. Colonies Diat-fopped mushrooms or sessile cushions, the surface sometimes raised into lobes ur wellings 3
Colonies not flat-topped lobes or sessile cushinus, usually with branched stalks

5

3. Sand entredded in test P. inflatimen. n. Sand not emberded in test 4
4. Embryos incubated in a brood pouch \qquad r.pulvinam п.sp

Embryos not incubuted in a breod pouch \qquad
5. Sand crowded in central or suh-surface lest.... 6 Sand not crowded in central or sub-surface test .7
6. Sand in central test; head not pointed
.P. pilatumn n.sp.
Sand in liyet bentath surlace: head pointed P. achatum n.sp.
7. Embryos in a brond pouch; stalk soft, 隹hy P. ausirale
Embyros not in a hrood pouch: stalk non shf. neshy

8
8. Ovary antrrion to lestis follicles. P. ortens n.sp. Ovary surrounded by testis follicles \qquad P. candens n.sp.

Species recorded from reginns adjacent to Australia

Stalked species

Pseudodistoma africanum Millar, 1954 (see also Millas 1962) from Cape Province, South Africa, has a varicty of colonics, probably not all conspecific. assignedto it. The Walker Bay (type) specimens have stalks tapering to the base, and rescmble P. oriens n.sp. (sce helow) excepi for the sand embedded in the central tess, and the spherical shape of the head of the South Alrican species. The specimen from Natal (Millar 1962) with kong tapering stalk has a smaller larval trunk than P. oriens.
Pscudodistoma antinboja Tokioka, 1949, from Japan (sec also Nishikawa 1990, Ron 1971), has conical heads on short, thick, wrinkled cy linurical stalks and resembles the New Zealand P, cereum, differing in having only 8 to 9 stigmata per row (rather than 20 to 24). The Australian P. ausirale alsu is similar (see below).
Pseudodistonna arburescens Millar, 1967 from Madagascar, New Caledonia (Monniot 1987) and the Philippines (new records: QM GH456 GH471-3) has distinctive colonics of narrow, branching stalks with embedded sand, and solit, rounded or conical hedds. Zooids have up to 15 stiginata per row, and a relatively long, narrow oesophagus, with the stomach in the posterior half 10 one-third of the abdomen. Larvae have a trunk 0.6imm long, deep pseudodistomid-like adhesive organs, and lateral ampular.
Pseudodistona cereum Michadsen, 1924 (sec also Brewin 1958) from New Zealand resemhiex P. ansfrale, especially in its collour, it has similar wide, thick, short, stalks, 20-24 sligmata per row, and sinilar but smaller larvae with the trunk shout 1.0 mm long. It also differs in having a developmental sequence of up to 8 emhryos in the top of the oviduct (Brewin, 1958) sather that the single one being incubated in the thoracic brood pouch in the Aussatia species (sce below). It resembles, but is targer than, an undescribed tropical species from the Philppines (see P. aureum remarks, bclow).
Pseudedistoma novaeze'tandine (Brewin, 1950), From New Zealand, has colonies with pointed lohes on short, thick stalks that resemble those of P. ceremm. differing in the relatively long oesophagus with the stomach in the posterior third of the athomen.
Psetudodistome apacum (Brewin, 1950) from New Zealand has flat-opped, sessile Inbes atrached to basal tesl. These differ from the stalked lobes of P. ardintoja Tokioka, which similarly has lew stegmato per
sow. Like P. novuerelundure, P. opucum has relatively long oesophagus.

Sessile species

Psetudodistonta brieni Pérès, 1949, from Senegal. forms massive, sessile lobes. rose-ycllow or brown in life, with eartilaginous test. Zoods are numerous, irregularly placed. Twelve 1014 stigmata are in each ruw. A developmental sequence of up to 4 embryns are in the top part of the oviduct (as in P. cereum) which distinguishes the species from the Australian P. pulvinum n.sp. (see below') which has similas colonies. The larval trunk is probably about 1.0 mm long and the larvac look like those of P. austrate.
Psendodistoma cyrnusense Pérès, 1952, from Corsica is yclow in life, with an orange pigment patch cach side of the cerebral ganglion and one at the anterior end of the endostyle whinch distinguish the species from others (see P. ausirale n.sp., below).
Psetudodistoma fragile Tokioka. 1958, from Japan has soll mueds-like test that readily disintegrates as in P. gracilum n.sp. The Jupanese species has up to 5 cmbryns heing incubated in a brood pouch rather than only the one found in the Australian species.
Pserededisterma kancke Tokioka and Nishikawa, 1975, from Okinawa has massive sessile colonies, with translueent, firm test, red with white patches around mooid npenings. Zooids have weak lungitudinal muscles on the therax, and 10 stigmata per row. Embryes are incubated in the posterior ablomen, sonetimes projecting from it, and larvae have a trunk 2.1 mm long with the tail and arrial siphon apparenty displaced. Zooids of P. australe have bighter yellowe patches anteriorly, but these are at the tup of en doseyle and between the apcrures rather than surrounding them. A specimen with a leathery tapering stalk was assigned to P. kanoke (see Nishikawa and Tokioka 1976), but there is insufficient informations to estahlish whether it is a momal variation in colons form or a different speries rellied to P^{2}, affictaum ons P. oriens n.sp.

Pseudodistoma acuatumn.sp. (Fig. 15. Plate 3b)

DIStRIBUTION

Type Locinaty: Surth Austraha (Wand 1.. $20-25 \mathrm{~m}$. coll. S. Shepherd 31.3.82, holotype SAM E2120 (10 Ch92.3; Ward $1 .$. on undercuts and ledges. 8 m , coll N
 CH2323).

Further Records: None.

DESCRIPTION

External. Appearance: The colonics, up to 10 cm high, consist of a basal primary trunk, secondary, and tertiary branches (the terminal pointed lobes), each of about the rame length $(3 \mathrm{~cm})$. The colonies are firm throughout, and have a layer of sand embedded beneath the surface of the colony, The branches are crowded and vertical. Sand is absent from the central test. Zooids are crowded and project through the sand to open around the sides of the terminal lobes of the eolony. Living colonies are white.

InTERNAL STRUCTURE: The zooids are very long, extending down through the stalk to the base of the colony. Fine longitudinal museles extend the whole length of the zooid, and terminate each side of the tip of the posterior abdomen. The pharyn x is narrow, with only about 8 stigmata per row. The oesophagus is relatively long, the stomach being in the middle of the posterior half rather than in the middle third of the abdomen. $1 t$ is smooth walled, and quadrate in section. the male follicles are in the posterior end of the posterior abdomen.

A single embryo is incubated in a brood pouch projecting from the zooid at the top of the abdomen in specimens collected in January.

REMARKS

These stalked colonies have a superficial resemblance to P. ceremm, however they have longer and more pointed heads and branching, rather than simple eylindrical stalks. The sympatric specics Pseudodistoma pilatum n.sp. has sand throughout the centre of the eolony (rather than confined to a layer beneath the surface as it is in the present species), its stalks are thicker, shorter and not as long as those of the present species, the terminal expanded head has a more or less that upper surface (where the zooids open) rather than being long and pointed, and it has more numerous stigmata.

Pseudodistoma aureum (Brewin, 1957)
(Fig. 16)

Sigillinaria altrea Brewin. 1957, p. 580.
Pseudodistoma aurea: Kott, 1981, p.157. Nishikawa, 1984a, p.114. Monniot and Monniot, 1987, p.81.

FiG. 15: Psendodistoma uchatum n.sp. - a, part of colony (holotype SAM E2120); b, zooid (paratype QM GH2323). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 0.5 \mathrm{~mm}$.

DISTRIBUTION

New Records: Queensland (Capricom Group, QM GH495s -73 GH5103 GH5177 GH5199 GH5206 GH5259 GH5502 GH5691).
Previously Recorded: New Zealand (North I. Brewin 1957). Fiji (Dravuni - QM GH106 Kott 1981). Majuro Atoll (Nishikawa 1984a). French Polynesia (Monniot and Momiot 1987).

DESCRIPTION

External Appearance: The colonies are sessile, flat-topped pillow-, or mushroom-shaped, to 2 cm high and 3 cm diameter, sometimes narrowing to a short stalk from the lower surface. The test is fyrn, transparent in preservative with zooids evenly distributed in it. Each zooid opens (on the upper surface only) by 2 apertures. In living colonics the test is transparent, orange buff. 'ochraceous buff" "tawny ochraceous", "buff yellow', 'maize yellow', 'Indian yellow', "deep chrome', 'chrome yellow', 'orpiment orange', "cadmium orange", "vinaceous pink", or "saturn red" (Ridgeway 1886). Oecasionally there is a honcycomb pattern. of 'orange ochraceous. (blood?) around the zooids. Zooids are opaque, and usually a darker shade of the same colour as the test. One collector (PK) has referred to the appearanee of these colonies as "orange iec or "soft orange look'.
INTERNAL STRUCTURE: Zooids are long (about Smm) and slender. Anteriorly they project slightly from the upper surface and posteriorly they extend into the base of the colony and into the stalk (when one is present). The thorax und abdomen together are only about 2 mm long, the remainder of the length consisting of posterior abdomen. Only very short vascular stolons are present at the posteriorend of the zooid. The atrial siphon is sometimes longer than the branchial onc. About 12 longitudinal muscles extend along each side of the thorax and along the abdomen and posterior abdomen which, when muscles are contracted, may be drawn up behind the abdomen in a short, blunt appendage no longer than the ahdomen. About 25 stigmata are in the anterior rows, the dorsal end of each row extending anteriorly along each side of the dorsal mid-line. The posterior and middle rows each have 20 stigmata.

The oesophagus is relatively long, and the short, smooth-walled stomach with the usual 4 compartments is two-thirds to three-quarters of the distance down the abdomen. The duodenal area is relatively short. An oval posterior stomach ts in the pole of the gut loop. The testis follicles are in a single series in the middle of the posterior
third of the posterior abdomen, and the small ovary is just anterior to the malc follicles. Up to 4 embryos are present in a developmental serics in the distal part of the oviduet (in the thorax and at the top of the abdomen) in speeimens collceted in May, October and November, but not in January, April, August, or September. Gonads were not present in the small colonies taken in April

FIG. 16: Pseudodistoma aureum - a, part of colony surface (QM GH4958); b, zooid (QM GH4970); c, larva (QM GH4970). Scales: a, 2 mm ; b, 0.5mm; c, 0.2 mm .
and August. A colony taken in September has male follicles but no ovary, and it is possible that the species is protandrous.
Larvae are relatively large, the trunk being 0.6 to 0.65 mm long. The tail is wound slightly more than halfway around it. The 3 median adhesive organs are on short thick stalks, and four rounded lateral ampullae are on each side of the anterior mid-line. The axial cone of adhesive cells has a narrow stalk attaching it to the base of the epidermal eup, and it has a tuft of what appear to be columnar cells diverging out from the base to a flat terminal platform.

Remarks

Characteristic of the present speeies is the relativcly elear, transparent test and the rounded cushion-like colonics. The oesophagus deseribed for the New Zealand colonies (Brewin 1957) is longer than that in the present material, and the duodenal region between the stomach and midintestine appears to have been overlooked. In all other respects, however, zooids, eolony and larvae from the type material are the same as those from Fiji (Kott 1981), French Polynesia (Monniot and Monniot 1987) and Heron I.
The firm, clear, golden colonies are readily distinguished from other species of Pseudodistoma. The zooids also differ from most other species in their relatively long oesophagus, short vascular stolons and small larvae with a tuft of columnar cells rather than the thin-walled everting balloon of other species. Pseudodistoma cereum has a similar larva of about the same size, but a short oesophagus (see Brewin 1958) and stalked colonies; P. novaezelandiae has a longer oesophagus, but also has stalked colonies; and P. opacum (Brewin, 1950) has a longer oesophagus, but lobed colonies and only 9 or 10 stigmata.
Of the known indigenous Australian speeies the oesophagus is a similar length in P. inflatum n.sp., which can be distinguished by its less regular, opaque orange colonies with sand in the base, and gonads in the anterior half of the posterior abdomen. Pseudodistoma arborescens Millar, 1967 from Malagasy, New Caledonia and the Philippines (new records: QM GH456 GH471-3) has a similar long oesophagus, and gonads in the posterior end of the posterior abdomen but is distinguished by its eolony, with rounded to conieal hcads on long branched stalks.

Pseudodistoma australe Kott, 1957

(Fig. 17. Plate 3e,d)
Pseudodistoma australis Kott, 1957, p.101; 1963, p.78; 1972b, p. 172 (part, not specimens from Waldegrave I. < Sigillina grandissima Kott).
Psellodistoma cereum: Kott 1972a, p. 12.

DIStribution

New Records: Western Australia (Exmouth Gulf, QM G9289 G9290 G9473; Shark Bay, WAM 867.83 QM GH2133, WAM 1018-9.83; Houlman's Abrolhos, WAM 764.82814 .83950 .831015 .83198 .87 198.88234 .88 238.88; Cockburn Sound, WAM 152.75 928.89). South Australia (Great Australian Bight, QM GH4160; Cape Jaffa, SAM E2486). Victoria (Port Phillip Head, QM GH51).
Previously Recorded: Western Australia (Rottnest I.- holotype AM Y0919, AM U3982-3 Y1314 Kott 1957 1963). South Australia (Elliston Bay - SAM E2549 Kott 1972b; Nora Creina Bay - SAM E2440 Kolt 1972a).

DESCRIPTION

External Appearance: The colonies are stalked or sessile, conical to rounded fleshy lobes or stalked heads arising from a common basal test mass or upright fleshy stalk. The zooids open all around the lobes but not on the eommon base or stalk.

The smaller conical heads (about 1.5 cm long) on relatively long (to 2.5 em) narrow stalks (WAM 1015.83) probably are younger colonies than those in which the almost sessile heads, up to 5 cm , are on a fleshy basal test mass to 1.5 cm high (WAM 867.83). The test is very soft but fibrous, and firmer in the stalk than the head. The stalk eontains seattered sand grains. In preservative the colonies are often very squashed.

In life, the head is rose-pink to red-orange, with the outcr layer of test translueent and a white to yellow opaque ring around the rim of each aperture. The stalk is brown. Zooids are orange in preservative, fading to whitish-beige. The white particles that form the opaque ring around the apertures persist in the surface test around the apertures.

The laterally flattencd speeimens from South Australia (SAM E2486) have a pateh of yellow or brown pigment over the dorsal tuberele. The faded, preserved zooids of the holotype colony have an opaque, white, eireular patch in the same

FlG. 17: Pseudodistoma australe - a, b, colonies (a, QM G9473; b, WAM 859.83); $\mathfrak{c}-\mathbf{e}$, zooid and parts of zooids (c, e, holotype AM Y919; d, WAM 152.75); f, g, larvae (holotype AM Y919). Scalcs: a, b, lcm; c-e, $0.5 \mathrm{~mm} ; \mathbf{f}, \mathrm{g}, 0.2 \mathrm{~mm}$.

position over the dorsal tubercle. Similariy, there are yellow spots over the dorsal tubercles of the orange lobed colony photographed at Exmouth Gulf (AMPI 76, Plate 3c),
Internal Structure: Contracted, the thorax and abdomen together are sometimes only about 1.5 mm long. The posterior abdomen is straplike, and about the same length. However, in less contracted zooids the posterior abdomen and delicate vascular stolon extend down into the stalk of the colony and zooids are long and threadlike, most of their length being posterior abdomen. Longitudinal muscle bands (from 12 to 20 oneach side) extend along the length of the zooid, half from the atrial and branchial siphons and about half from the anterior part of the ventral border (across the endostyle), They terminate at the end of the posterior abdomen. The branchial tentacles are in about 4 rows, the 6 largest ones in the posterior circle. The branchial sac is wide, with 22 stigmata in the second and third tows, and about 25 in the anterior row, which is deflected anteriorly along the dorsal midline.

The oesophagus is moderately long. The stomach, divided into 4 longitudinal quarters by shallow grooves in its otherwise smooth wall, is about halfway down the abdomen. The duodenal area is long, an oval posterior stomach interrupts the narrow mid-intestine in the pole of the gut loop. A rectal valve at the proximal end of the ascending limb of the gut loop separates the mid-intestine from the rectum. The anus, with a bilabiate border, opens halfway up the branchial sac.

A short double series of small male follicles were observed in the posterior end of the posterior abdomen in the holotype, although they are half to three quarters of the way down the posterior abdomen in the South Austratian specimens (SAM E2486),

A single series of about 8 mature male follicles are present about two-thirds of the way down the contracted posterior abdomen in a mature colony from Exmouth Gulf collected in August (QM G9473). They are flattened against one another into dises, but this may not be their shape when the zooid is extended. Zooids in a colonly off Rottnest have a single embryo being incubated in the oviduct at the top of the abdomer, just behind the postero-dorsal comer of the thorax. The large embryo protrudes from the zooid, distorts the thorax, and is partially constricted off from it.
The larval trunk is 1.0 mm long and the tail wound halfway around it. It has 3 large, stalked adhesive organs in the anterior mid-lize, each consisting of an ectodermal cup around a large
hollow eversible axial cone or platform, all on a long nartow stalk. Four wide ampullae alternate with the adhesive organs. These are flattened antero-posteriorly and are produced laterally on each side into rounded lobes that curve ventrally, forming a cushion around the stalks of the adhesive organs. There is an ocellus and an otolith. In some zooids of colonies collected in Novemiser and December (AM Y919. U3982) a single embryo is present in a brood pouch, partially constricted off from the top of the abdomen. Ova were not detected in any of the other colonies.

REMARKS

The type colony, although mutilated, appears to have been stalked rather than the investing cushion which Kott (1957) thought it to be.
The species resembles P. cereum from New Zealand, which has similat stalked colonies although the heads are regular anid rounded; and although its larvae are also similar they are smaller (trunk 1 mm long). Some of the colonies resemble some of those of P. africanum Millar, 1954 which are also said to be pink in life (see Millar 1962). However the head and stalk of South African material remain distinct, in even the largest colonies, and the long sessile lobes found in the present species do not develop. Two sessile colonies from Western Australia differ from the present species in having sand in the stalk, and larger larvae without ampullac around the sessile adhesive organs; and in lacking a distinct brood pouch constricted off from the abdomen. They bave been assigned to Pseudodistoma oriens n, sp, (WAM 859.83 923.83).

Pseudodistoma cyrnusense from Corsica is a sessile species with pigment patches in a similar position to the present species. However the Corsican species has 2 (one each side of the dorsal tubercle) rather than the single median one of P. custrale.

> Pseudodistoma candens n.sp.
> (FIg. 18, Plate $3 \mathrm{e}, \mathrm{f})$

Psendodistoma cereum: Kott, 1975, p.4.

Distribution

Type Localiry; South Australit (Pearson I., coll, S.A. Shepherd 28.3,82, holotypeQM GH977, paratype SAM E2118).
Further Records: Western Australia (Cervantes, WAM 197.87: Dongara; Cockburn Sound, WAM 70.75841 .83 QM GH2132. WAM [014.83 QM GH5462). South Australia (Cape Jaflia. SAM E2117

E2119 E2446 E2526, QM G9286 Kott 1975); Ward I., QM GH1295; Topgallant I., QM GH972; Hotspot, QM GH2421; Nuyls Archipelago, SAM E2408); Victoria (Cape Nelson, SAM E2407).

DESCRIPTION

External. Appearance: Colonies are long (to Scm) and oval (to 2 cm diameter), to short and rounded (to 3 cm diameter) or conical and sometimes laterally: flattered heads, usually on a thick (1 cm diameter) stalk of variable length (to 5 cm) sometimes tapering to the base. It is always tough, leathery and transversely wrinkled. The head sometimes overlaps the top of the stalk. On the head the test is tough, in larger specimens almost opaque, and more or less smooth on the surface with cloudy brown pigment cells.

The stalked heads often appear to be solitary, but occasionally the stalk is branched. Replicated zooids with small abdomina sometimes are present in the stalk and appear to move up into the head as it develops. The zooids open all around the outer surface of the head. Living specimens ate said to be wine red, although the colour appears to be in the zooid, and the test is translucent, In photographs of a living specimen (Pl, 3e,f) fine red barvis are present around each aperture, In preservative the zooids are yellow but subsequently fade to white.

INTERNAL Structure: The zooids are up to 2 cm or more, although most of their length is taken up by the posterior abdomen, and the thorax and abdomen are together only about ene to 2 mm . There is a long (up to 2 cm) vascular stolon extending posterionly from the end of the posterior abdomen. Twenty to 40 longitudinal muscles extend the length of the zooid and some of these extend along the length of the vascular stolon. The branchial and atrial lobes are especially conspicuous. Up to 20 long, rectangular stigmata are in each of the second and third rows, and in the anterior fow additional stigmata extend forward along each side of the mid-dorsal line. The stomach has the usual 4 longitudinal compartments, A long, duodenal area and oval posterior stomach are in the distal part of the descending limb of the gut loop. The heart is a U-shaped tube at the end of the posterior abdomen.

The gonads are in the anterior part of the posterior abdomen just behind the gut loop. The testis follicles are large and pear-shaped and are in a long, loose or atightly bunched cluster around the small ovary. The vas deferens is long, extending from halfway down the side of the male follicles to a point level with the ovary, where it is joined
by the vasa efferentia from the follicles. The length of the testis probably depends on the state of contraction of the posterior abdomen. A single large embryo is found in the oyiduct at the top of abdomen in the holotype. Some specimens (QM GH972) collected in Narch from South Australia have a conspicuous egg in the posterior abdomen but male follicles are not developed. Mature male follicles are in specimens from Point Peron (WAM 70.75) collected in April and from Cervantes I. (WAM 189.75) pollected in May. Large larvac (1.5 mm trunk) project from the side of the zooid along the length of the oesophagus to jusi behind the atrial cavity in specimens collected from Pearson I. in March (QM GH977). Larvae have 3 large, stalked eversible adhesive organs in the midline anteriorly, The axial protrusions are rounded and the everted organs seem to expand into thin-walled balloon-shapes. About 8 long, digitiform ectodermal ampullae per side bend anteriorly at right angles to lie parallel to the stalks of the adhesive prgans. The tail winds three-quarters of the way around the trunk, Ant ocellus and ovolith are present.

REMARKS

Psendadistoma africanium Millar, 1954 (also Millar 1962) from South Africa, has rounded heads on stalks tapering toward the base, as in the present species. With the exception of one specimen from Natal which is 8 cm long and may be a different species (Millar 1962\%, the African species has smaller colonies, softer stalks without an outer leathery cuticle, and less muscular zooids with only about 8 longitudinal bands. The large specimen from Natal more closely resembles P. candens, having about 20 longitudinal muscles. However its larya is smaller (Imm long trunk).

Pseudodistoma cereum Michaelsen, 1924 from New Zealand, has shorter, fleshy and cylindrical stalks (see Brewin 1958) rather than the long ones of P. candens.

The present species does not have sand included in its test, and thus is distinguished from other Australian stalked species (e.g. Pseudadissoma pilatum n.sp. P. acuatum). The species most readily confused with the present one is the sympatric Pseudodistoma oriens nisp., which sometimes has long tapering, leathery, wrinkled stalks like the present species Psendodistoma oriens has pointed conical heads rather than rounded ones, softer more transparent test on the head, and slightly larger zooids. It also has larger larvae with sessile (rather than stalked) adhesive organs, a long inegular series of testis follicles in

the posterior half of the posterior abdomen and separated from the ovary (rather than being bunched around the ovary in the anterior half as they are in P. candens), and a wide band of strong muscles on the vascular stolon. Colonies of P_{t} candens from off Cape Jaffa may be found to be a separate spectes. However they differ from the type only in their darkly pigmented zooids, thick fleshy stalks, and large opaque flattened heads, and for the present they have been assigned to P. candens.

Pseudodistoma gracilum n.sp. (Fig. 19. Plate 4a-c)

Pseudodistoma cyrnusense: Kolt, 1972h, p-173. Pseudodistoma cereum: Kotr, 1976, p. 58. Pseudodistoma fragile; Monniot, 1987, p. 508.

DISTRIBUTION

Type Locality: South Australia (Top Gallant I. 10 m , coll. S. Shepherd March 1982, holotype SAM E2413 QM GH97I; Grindal l., coll. W.H. Sasse 6.4.87, paralype QM GH4167).
Further Records: South Australia (Top Gallant I., QM GH973; Investigator Group, QM GH2422; Elliston Bay - SAM E2414 Kott 1972b; Beachport, SAM E2412; Kangaroo I., QM G11989; Cathedral Rock, QM GH4158). Victoria (Western Port -MV F57789 Koll 1976). New South Wales (Jervis Bay, QM G10092; Port Jackson AMY2263). Queensland (Heron I. QM GH4954; Lizard L., QM GH3808; Lihou Recf, QM GH4955; northem Great Barrier Reef, QM GH5334).

Description

External Appearance: The test is mucuslike and disintegrating in preservative, often with the zooids lying free and the colonics so soft and flaccid their shape cannot be seen. In preservative all colonies are pale cream with beige zooids and contain evenly distributed cloudy morula cells in the test.

In photographs of some living specimens (QM GH4167 GH5334) the test is colourless and the extended zooids show as white streaks converging into the centre of the colony. The collectors notes record the holotype specimen to have had a "colourless matrix with cream zooids'. However a colony (QM GH973) taken from the holotype location at the same time (March 1982) but at is
greater depth (20 m rather than 10 m) is said to have been 'dark green with blue zooids'. One colony is recorded by the collector to have been a 'white jelly-like ascidian', but the photograph of the specimen (QM G11989) in sifu has pale violet zooids, and a photograph from the same location shows white streak-like zooids in a colourless test (AMPI 223). The specimen from Cathedral Rock (QM GH4158) appears from its photograph to be bluish-purple like the Kangaroo 1. specimen (QM G11989). Other collectors teport living colonies with "black-purple zooids' (QM Gl0092), and white zooids in "a very fluid pale brown gel' test (QM GH3803). One living colony is reported to have been a 'fragile gelatinous mass about 50 cm square and 3 cm thick under a large rock' (QM G10092). The colony from Lihou Reef is saucer-shaped (QM GH4955). Only one bluish colony from South Australia (QM GH4158), in which zooids are in a vegetative condition, has relatively firm test and the colony entire in preservative. From photographs, colonics vary from spherical to extensive masses with the surface produced into lobes.
Internal Structure: Zooids are robust up to 3 cm long, most of the length being a narrow thread-like posterior abdomen. Thorax and ahdomen are together about 3 mm long, the thorax slightly longer than the abdomen when relaxod. The atrial siphon is sometimes longer than the branchial siphon, but sometimes the whole dorsal surface of the zooid swells out behind the atrial aperture forming a conical projection. Each aperture has 6 well-defined, evenly rounded lobes around its rim. From 12 to about 20 longitudinal muscles are on the thorax, and extend along each side of the abdomen and posterior abdomen. Fine transverse branches from the ventral longitudinal muscles terminate along each side of the endostyle. The longitudinal muscles terminate posteriorly in well-defined homs each side of the heart at the end of the posterior abdomen. Muscles do not extend onto the one to 4 fine vascular stolons, which vary from short to moderately long. Stigmata are from 0.4 mm to twice that length, depending on the state of contraction of the therax. They reduce in length at the ventral end of each row. From 20 to 25 stigmata are in the second and third rows and about 25 to 30 in the anterior row (which deflects anteriorly along the mid-dorsal Iine).

FIG. 18: Pseudodistoma candens n.sp. - a, colony (holotype QM GH977); b-d, zooids and parts of zooids showing embryos being incubated, proportions of zooids, relatively long vaseular stolon, bunched westis follicles surrounding ovary, and distended vas delerens (b-c, holotype QM GH977; d. QM GH5462); e, harva (holotype QM GH977). Scales: a, $1 \mathrm{~cm} ; \mathrm{b}, \mathrm{d}, 0.5 \mathrm{~mm} ; \mathrm{c}, 2 \mathrm{~mm} ; \mathrm{e}, 0.4 \mathrm{~mm}$.

The smooth-walled stomach halfway down the abdomen is partially divided into 4 brnad, shallow longitudinal compartments. An oval posterior stomach is in the pole of the gut loop. A distinet reetal valve is at the proximal end of the ascending limb of the gut loop. A bunch of pyriform male follicles is about three-guarters of the way down the posterior abdomen or sometimes in the posterior quarter. A small ovary is anterior to the male follicles in a specimen collected in April (SAM E2412 from South Australia) and from Lihou Reef (QM GH4955: unknown date). These colonies have a single round embryo in the brood pouch constricted off from the top of the abdomen. Embryos were not in other exantined material.

The single larva in each brood pouch of specimens from New Calcdonia (Monniot 1987) has the tail wound hallway around the 1.75 mm long trunk, and, like larvae of P. aureum, has deep conical adhesive organs, 2 lateral ampullac and median dorsal and ventral ampullae.

REMARKS

A specimen of this species (QM G10092) analysed for vanadium was found to have $800-1600$ ppm (Paul Fredrickson pers. comm.).

The species has a range in the number of stigmata but neither this nor any other morphological or geographieal feature has been identified to correlate with colony appearance in photographs. However, it is not known what the colonies with zooids fully extended and appearing as white streaks would look like when contracted. Further, the zooids of colonies appearing as blue-purple in photographs always are contracted (in one case they also are in their vegetative phase). Possibly when extended they would appear as characteristic white streaks in colourless test.

Pseudodisfonu fragile: Monniot 1987 seems not to be distinct from the present species. Monniot has recorded about 40 stigmata, although in the figured specimen (Monniot 1987, Fig. 5A) they are not so numerous, being near the top of the range recorded for the Australian specimens (see QM GH4167 from South Australia and QM

FIG. 19: Pseudodistoma gracilum n.sp. - a, zooid showing fine transverse branches from ventral longitudinal muscles, bunched male follicles and ovary halfway down posterior abdomen, and brood pouch (QM GH4955); b, contracted zooid (QM G10092); c, posterior end of posterior abdomen showing leart, the insertion of the longitudinal muscles, and vascular appendices (QM Gil1989). Scales: a, b, 1.0 mm ; \mathbf{c}, 0.5 mm .

FIG. 20: Psewdodistama inflotum n.sp. - zooid (QM G9636). Scale: 1 mm .

GH4955 from Lihou Reef in the Coral Sea). The fact that one of the colonies with the maximum number of stigmata is from southern Australia and the other from the Coral Sca tends to support the view that the New Caledonian and Australian specimens are conspecific.

Pseudodistoma fragile Tokioka, 1958 (from Japan) has similar fragilc colonies and similar zooids to the present species. However, the Japanese species has greenish-yellow (rather than blue or white) living zooids, the long curved brood pouch contains up to 5 embryos (rather than one), and the larvac have a trunk 2.3 to 2.6 mm long (instead of 1.75 mm in the New Caledonian specimen). Apart from the size difference, the larvae of the Japanese species and the present one are similar. Larvae with a large trunk are not unusual in this genus, but the absence of median ampullac and the limited number of lateral ampullae is.

Pseudodistoma inflatum n.sp.

(Fig. 20, Plate 4f)

DISTRIBUTION

Type Locality: New South Wales (South Solitary Is. rock faces 10 mm , coll. N. Coleman 27.9.76, AMPI 184, holotype QM G10157: Julian Rocks, Byron Bay, recf, 15m, coll. N. Coleman 29.3.75, AMP1 158, paratype QM G9472).
Further Records: New South Wales (Byron Bay, AM Y2002; Coffs Harbour, QM G9636). Queensland (Ngeering Reefs off Mooloolabah, QM GH5666-7).

DESCRIPTION

External Appearance: The colonies, to 3 cm in maximum cxtent and 2 cm high, are flat-topped and mushroom-like or sessile cushions with rounded margins, or wedge shaped narrowing to the upper free margin. The surface sometimes is raised into ridges and rounded to conical elevations, or divided into flat-topped lobes. Sand is present in the centre of the colony, just bencath the surface in the base, becoming less crowded and removed from the surface toward the top of the colony. Sand always is absent from the surface layer of test, which is opaque (in preservative) and contains a white cloudy suspension.

Living colonies are opuquc, orange-red over each zooid and bright yellow between them. In preservative they are grey and firm.

Internal Structure: Zooids are small and slender, often less than 1 cm long when contracted. Atrial and branchial siphons are about the same size, and both apertures are bordered by 6
well defined rounded lobes. The longitudinal muscles extend in a wide band along each side of the abdomen and posterior abdomen. The heart is at the posterior and of the posterior abdomen the vascular stolon is relatively short.
There appear to be about 20 stigmata per row, however the exact number could not be determincd owing to contraction of the thorax. The oesophagus is long, and the conspicuously 4chambered stomach is in the anterior half of the posterior third of the abdomen. Gonads, when prescnt, are in the anterior half of the posterior abdomen, the testis follicles in 2 clumps, one anterior and one posterior to a large ovum. Sometimes the anterior clump of testis follicles extends up into the abdomen alongside the gut loop. However in other spccimens thcre is a gap between the anterior testis follicles and the posterior end of the abdomen. Larvae are not known.

Remarks

This spccies appears to be indigenous to the southern (temperate) half of eastern Australia. Like the tropical species P. aureum and P. arborescens Millar, 1967, and P. opacum and P. novaezelandiae (from New Zealand), it has a long oesophagus. It most closely rescmbles P. aureum from which it is distinguished by its irregular opaque colonies with sand in the basal half, and the posterior position of its gonads.

Pseudodistoma oriens n.sp.

(Fig. 21. Plate 5a)
Pseudodistoma cereum: Kott, 1972b, p. 173 (part, not specimens from Elliston Bay $<P$. pilatum $\mathrm{n} . \mathrm{sp}$.).

DISTRIBUTION

Type Locality: Victoria (Port Phillip Heads Channel, 20 m very fast current, on ledges, common, coll. J.E. Watson 25.11.76, holotype MV H306; paratypes QM GH4953).
Further Records: Western Australia (Rottnest I., WAM 859.83 QM GH2I34; Geographe Bay, WAM 923.83). South Australia (Waldegrave I. - SAM E2115 E2116 Kott 1972b; off Cape Jaffa, SAM E2525; St. Vincent Gulf, QM G9287). Victoria (Port Phillip Heads, QM GH116).

DESCRIPTION

External Appearance: Colonies consist of stalked, pointed heads (up to 6 cm long), the stalk usually longer than the head. Although most of the specimens in the examined material are solitary, the holotype has a number of stalked heads attached to a basal membrane. Stalks are up to 10 cm long. Usually they are leathery and wrinkled with an outer hard cuticle, tapering to the base (MV H306, QM GH4953, SAM E2115 E2116). A few of the specimens have short, cylindrical stalks with some embedded sand (WAM 859.83923 .83). Zooids are conspicuous with the atrial openings toward the free end of the head. The branchial openings are closer to the stalk. The zooids bend at right angles so that, despite the orientation of the thoraces, the posterior ends extend down into the stalk, as is usual for most stalked aplousobranch species (Kott 1989).
Living colonies are said to be 'horizon red'. In preservative the test is translucent and the zooids pink to orange, subsequently fading to opaque cream.
InTERNAL STRUCTURE: Zooids are small, the thorax and abdomen (contracted) together are about 1 mm long but about 3 times that length when partially relaxed (SAM E2115). About 20 longitudinal muscles extend along each side of thorax, abdomen and posterior abdomen. On the posterior abdomen the longitudinal muscles are in a wide, conspicuous band along each side and these continue onto the vascular stolon. Unperforated pharyngeal areas are anterior and posterior to the 3 rows of stigmata. The 2 posterior rows cach have about 22 stigmata and the anterior row has an additional 5 or 6 perforations continuing anteriorly along the mid-dorsal line. The stomach, with the usual 4 longitudinal grooves, is half way down the abdomen, and a long duodenal region and an oval posterior stomach are in its postcrior half. A narrow mid-intestine is in the pole of the gut loop. A rectal valve is at the base of the ascending limb of the gut loop, which extends to about halfway up the thorax, ending in a bilabiate anus. Mature male follicles are in a long series in the posterior half of the posterior abdomen in specimens from Waldegrave I. collected in October (SAM E2116). The small (2 or 3 egg) ovary is anterior to the testis follicles and well separated from them. Immature follicles can

FIG. 21: Pseudodistoma oriens n.sp. - a, colony (holotype MV H306); b, zooid showing thorax and abdomen (paratype QM GH4953); c, zooid showing ovary about halfivay down the posterior abdomen, and the narrow vascular stolon from the tip of the posterior abdomen (SAM E2116); d , zooid showing larva in brood pouch (paratype QM GH4953); e, f, Jarvae (WAM 923.83: e, less mature; f, mature). Scales: a, 2cm; b, c, d, 1 mm ; e, f, 0.4 mm .

be seen irregularly branching off the vas deferens in the posterior half of the posterior abdomen in specimens from Hotspot collected in June (SAM E2115),
In the type material from Port Phillip Heads collected in November (MV H306; QM GH4953), and the specimen from Geographe Bay collected in January (WAM 923.83) there are one or 2 embryos being incubated in the distal part of the oviduct at top of the abdomen behind the postero-dorsal comer of the thorax. These embryos become very large, project from the side of the abdomen, and distort the zooid (the abdomen as well as the thorax). However there is no brood pouch constricted from the side of the zooid.
The larval trunk is variable, from 1.1 to 1.7 mm long, and the tail winds three quarters of the way around it. A large, almost spherical yolk mass occupies a large part of the trunk, and the larval pharynx and gut are at the posterior end. An otolith and ocellus are present. The 3 median adhesive organs are large, sessile, consisting of an eversible, hollow axial cone depressed into the larval trunk. One mature larya from the specimen from Geographe Bay (WAM $923 ; 83$) has 5 adhesive organs, and 4 rounded ampullae from each lateral line. Other larvae examined from the same specimen lot lack the lateral ampullae, and have the usual 3 adhesive organs.

Juvenile, presumably replicate, zooids are present in the stalk of a developing colony lobe.

Remarks

Pseudodistoma oriens has long-stalked colonies like those of many specimens of P. candens, zooids have a similar long vascular stolon behind the posterior abdomen, and the species are sympatric for part of their range (viz. southern Australian waters). Pseudodistoma ariens is distinguished by its more robust zooids with wider bands of longitudinal muscles along each side of the posterior abdomen and vascular stolon, and the arrangement of its testis follicles in the posterior half of the posterior abdomen, its sessile larval adhesive organs, and its translucent test. Another sympatric species, P. australe is distinguished by its laryae, its lobed colonies and short vascular stolon.
The testis follicles branch off both sides of the vas deferens and when mature appear as a double or triple series in the posterior part of the posterior abdomen. This distinguishes the species from others with testes follicles in a single series posteriorly or bunched in the anterior part of the abdomen.
The large colonies of P. africanum: Millar, 1962 resemble those of the present species. However, all the specimens assigned to this South

FIG. 22: Pseudodistoma pilatum n.sp. (paratype QM GH922) - a, colony; $\mathbf{b}_{\text {s }}$ colony lobe, showing apertures (QM GH922); c, d, zooid. Scales: a, b $1 \mathrm{~cm} ; \mathbf{c}, 1 \mathrm{~mm}$; d, 2 mm .

African species (Millar 1954, 1962) may not be conspecific. Larvae are known only for large colonies from Natal (Millar 1962), and these, although not fully developed, appear to have ampullae developing and resemble larvae of P. candens rather than those of the present species.
The short conical or spherical colonies from Western Australia (WAM 859.85) with sand in the basal half of the colony, but without the long tapering stalk, could be distinct, although their larvae are the same as those of the present species.

Pseudodistoma pilatum n.sp. (Fig. 22. Plate 5b-d)

Pseudodistoma cereum: Kott 1972b, p. 173 (part, not specimens from Waldegrave $1<P$. oriens n.sp.).

Distribution

Type Locality: South Australia (Ward I., 20-25m, coll. S.A. Shepherd 31.3.82, holotype SAM E2114 QM GH921, paratype QM GH922; 1-5m, paratype QM GH1296; Golden 1., paratype QM GH4140; Cathedral Rock, paratype SAM E2409).
Further Records: South Australia (Elliston Bay Kott 1972b SAM E2410; Nora Creina Bay SAM E2113).

DESCRIPTION

External Appearance: The colony has solid branching, more or less cylindrical, stalks up to 1 cm in diameter, and up to 2 cm long, arising from a solid basal test mass. The upper free end of each stalk has a rather shallow, circular to elongatc cap-like head, convex on its upper surface. In the stalk sand is present around the zooids, and the stalk and projects up into the centre of the head. The surface layer of test on the head is translucent, free of sand, and in preserved specimens contains small yellow pigment cells. Zooids open onto the upper surface of the head, each zooid with its 2 apertures close together in a small oval area. Living specimens are yellow to pink, with a sandy stalk.

Internal Structure: Zooids are long, the thorax and abdomen together up to 3 mm , of which the abdomen is about two-thirds. The posterior abdomen is often about 1.5 cm long, with a fine sometimed forked vascular stolon from its posterior extremity. However, it is often contracted. About 20 distinct longitudinal muscles extend from the thorax to the tip of the posterior abdomen. There are about 20 stigmata in each of the 3 rows. The oesophagus is rather long, and the quadrilateral stomach is in the postcrior half
(rather than the middlc) of the middle third of the abdomen. The small ovary is just anterior to the small male follicles which in extended zooids, are in a single series in the posterior half of the posterior abdomen although with contraction the follicles become bunched into 2 or 3 rows. A small ovary is anterior to follicles halfway down the posterior abdomen. The U-shaped heart is in the posterior tip of the posterior abdomen.

REMARKS

The species is distinguished from Pseudodistoma acuatum by its flat-topped (rather than pointed) lobes; the colour of the colonics; the presence of sand in the central test; the number of stigmata per row (only 8 in P. acuatum). Pseudodistoma opacum (Brewin 1950), from New Zealand also has only 9 or 10 stigmata per row, its lobes are sessile rather than stalked, and it lacks the sand embedded in the present species.

> Pseudodistoma pulvinum n.sp.
> (Fig. 23. Plate $5 \mathrm{c}, \mathrm{f}$)

DISTRIBUTION

Type Locality: South Australia (Ward I., in caves, 8m, coll. N. Holmes 12.4.83, holotype SAM E2411 QM GH2396, paratypes QM GH2397).
Further Records: South Australia (Flinders I., QM GH2300; Ward 1., QM GH2423).

Description

External Appearance: Colonies are sessile cushions about 1.5 cm thick, fixed by most of the basal surface, and with rounded margins. The zooids open all over the more or less flattened upper surface. The test is soft and gelatinous. Living specimens are usually a translucent golden colour, although one specimen (QM GH2423) is pink. In preservative colonies are white to grey with minute black pigment cells throughout.
Internal Structure: Zooids are threadlike. Extended, the thorax and abdomen are of equal length, together about 3 mm long and the posterior abdomen about 1 cm . One or two fine vascular processes of various lengths project from the postcrior end of the zooid. About 15 longitudinal muscles extend along each side of the zooid, to the posterior end of the posterior abdomen (on each side of the heart), not extending onto the vascular processes. Sometimes the posterior abdomen is drawn up into a short, thick tapering mass behind the gut loop. Twenty-five stigmata are in the second and third rows, and at the dorsal

end of the anterior row additional stigmata extend it along each side of the mid-dorsal line. The oesophagus is short, the stomach is halfway down the short abdonien, the duodenal area is relatively long, and an oval posterior stomach is in the pole of the gut loop. The rectal valve is conspicuous. A small ovary is present halfway down the posterior abdomen (scc QM GH2300), but testis follicles have not been detceted in any of the examined specimens.

Remarks

The test is firmer than that of Pseudodistoma gracilum, the colonies are smaller, and their appearance in life with their golden translucent and slightly iridescent test is different. The dark pigment cells in the preserved material also helps to distinguish them.

Genus Anadistoma n.gen.

Type species: Anadistnma atteruatum n.sp.
The genus is erected to accommodate species with 3 rows of stigmata, transverse thoracic muscles as well as longitudinal ones, a smooth stomach, a long oesophagus with the stomach more than three-quarters of the distance down the abdomen, and gonads in the posterior abdomen. These muscular zooids with their long oesophageal neck suggest a relationship with the gemus Eudistoma (Polycitorıdae) rather than Sigillina (Holozoidae; see Kot 1985), The possession of thesc eudistomid characters together with the relatively laree zooids, may mean that the relationship of this genus with Pseudodistoma is not as close as the presence of 3 rows of stigmata and the position of gonads in the posterior abdomen suggest.
It is unfortunate that only one specimen lot of this monotypic genus is available, and that it has no larvae which could help to confirm its relationships.

Anadistoma attenuatum n.sp.
(Fig. 24)
Psendodistoma cereum: Kolt, 1963, p. 77.

FIG. 23: Pseudodistoma pulvinum n.sp. - a, colony (QM GH2423); b, zooid, thorax contracted (QM GH2300). Scales: $a_{0} 1 \mathrm{~cm} ; \mathrm{b}, 0.2 \mathrm{~mm}$.

DISTRIBUTION

TYpe Locabity: New South Wales (Montague South, near Eden, 94 m , coll. CSIRO cruise CC/34 1938C. holotype AM Y1315, paratypes AM Y2212). Further recoris: None.

DESCRIPTION

EXTERNAL APPEARANCE: The living colonies appear to have been spherical up to 5 cm in diameter. The lower half is impregnated with sand, which becomes more sparse toward the upper surface. Sand is absent from the upper part of the colony, where the test is very soft and delicate. The zooids open around the upper half of the colony and converge toward the centre of the base.

FIG. 24: Anudistomo atternatum n.gen. n.sp. (holotype AM Y1315) - contracted zooid showing bunched male follicles. Scale: 0.5 mm .

Internal Structure: The zooids are large, and robust, up to 1 cm even when contracted, and probably about 3 times that length in extended condition. The thorax and abdomen together are at least two-thirds of the total length of the zooids. The vascular stolons are very short. Both siphons are well developed with distinct lobes around the apcrturcs and sphincter muscles. The 20 strong longitudinal muscles on the thorax extend in wide bands along each side of the abdomen and posterior abdomen. Beneath the longitudinal muscles on the thorax is an almost continuous coat of about 50 horizontal, circular museles. About 25 long, narrow stigmata are in the second and third rows. The first row of stigmata has more perforations, and is longer, extending forward along each side of the mid-line at its dorsal end. The ocsophagus is long and wrinkled in these contracted specimens. The relarively large smoth-walled stomach is in the posterior fifth or sixth of the abdomen. A wide duodenal region, and a narrow mid intestine are at the end of the descending limb of the gut loop, and an oval posterior stomach is in its pole. A rectal valve is at the proximal end of the ascending limb of the gut loop. The rectum, convoluted and pleated in these specimens, accompanies the vas deferens and the oesophagus up the long oesophagcal neek to about halfway up the pharynx.
Gonads are in the anterior half of the posterior abdomen, the large, pyriform male follicles crowded together, around a small ovary.

REmARKS

There is no other taxon that displays the unique combination of characters that distinguish this monotypie species from the genus Pseudodistoma. It is the only species of the Family in which the abdomen and thorax together are longer than the posterior abdomen.

Family POLYCLINIDAE Milne Edwards, 1842 emend.

The family (type genus Polyclinum Savigny, 1816) originally was established for genera with the gonads in a posterior abdomen. In the present more restricted sense, the family is further defined by the presence of eloacal systems, new families being crected to accommodate the genera with separately opening atrial apertures formerly comprising the subfamily Euherdmaniinae (sce above).

Polyclinidae Milne Edwards, 1842 has priority over Synoicidae Hartmeyer, 1908 (type genus Sywicum Phipps, 1774) which Hartmeyer erroreously had proposed as the senior synonym because Synoicum was the earliest described genus of the family.

In the family Polyclinidae, the branchial aperture has a regularly lobed rim, but the atrial aperture is not lobed. The latter opens into the common cloaca, guided by an anterior lip that either is a projection from the body wall anterior to the opening, or is produced from the anterior border of the opening. Minute branchial papillae that may be relicts of internal iongitudinal vessels are present in one genus only (Polyclinum). The oesophagus is short, with the stomach halfway down the abdomen. Gonads are in the posterior abdomen. These consist of a small ovary and numerous male follicles, either bunched or in longitudinal series. Larvae are small (the trunk usually less than 1 mm). They have an otolith and ocellus, 3 small median adhesive organs, ectodermal ampullae and vesicles. Fertilisation is in the atrial cavity and incubation is either in the atrial cavity, or in a thoracic brood pouch constricted from the body wall.

In the Ascidiacea prolific replication resolts in fast growth rates and rapid responses to ervimonmental pressures, large sized colonies, strengthening of the test allowing for greater diversity in shape than would otherwise be possible, and a high level of colony integration, organisation and the evolution of cloacal systems.
Evolutionary experiments with colonial systems occur in Polyzoinae (Stolidobranchia), and in Polycitoridae, Ritterellidae and Pseudodistomidac (Aplousobranchia), but only in exceptiotral cases (Exostoma and Hypodistoma see Kott 1990) are cloacal systems developed in these taxa. Nevertheless cloacal systems have evolved in a number of lineages in the Ascidiacea, viz, in some Holozoidae and all Polyclinidae and Didemnidae (in Aplousobranehia), and all Botryllinae (in Stolidobranchia).
In all these taxa the replicative process is prolific. However Polyclinidae may have particular advantages (pessibly shared with Didemnidae) in flexibility and colony size and form that derive from the strength of the test, the amount of test in relation to zooid size and the use of embedded sand and other malerial to strengthen it. Some of the largest ascidians and the greatest diversity in shape and form of colonies occues in this family (c.g. the three-dimensional reticulum of Aplidium acroporwm n.sp., the large vertical butitesses of

Aplidium arboratum. As well as extensive investing sheets and upright branched, lobed and convoluted colonies). Morphological structures of the test, independent of the overall colony habit, also occur to moderate interactions with the enviromment, and to insulate and protect the zooids and their apertures and enhance the advantages of the cloacal systems. Examples of this may be seen in Synoicum castellatum n.sp., Aplddium crateriferum, and A. lobatum colonies with surface ridges and depressions (that protect the incurrent apertures), and upstanding cloacal apertures (that elevate the excurrent water high above the rest of the colony). It may be these morphological characteristios of the colony that have enabled Polyclinidae to adapt to a wide diversity of habilats resulting in the remarkable radiation of genera, especially Aptidium.
The relationships of moss genera of Polyclinidae (Polyclinum, Aplidiopsis, Sidneioides) appear to be with Protopolyclinidae through Polyclinum. Branchial papillae, such as those in Polyclimum occur in Monniotus, and the stomach is similarly inclined and dorsally shorted. A curved oesophagus, smooth and obliquely of horizontally oriented stomach such as those found in Polyclinum are also in Holozoidae, but the larvae and the branchial sacs of Holozoidae are completely different.
However, Ritterellidae also has a claim to a elose phylogenetic relationship with some (but not all) species of Polyclinum, Aplidiopsis, Sid. netoides, and Synoicum, through the presence of a median dorsal papilla which protrudes from the body wall just posterior to the atrial siphon as in Ritterella compacta. Certain Rinerella species (e.g. R. compacta, R. comuta, R. multistigmata, and R. papillata) also have papillae on the transverse branchial vessels as in Polyclinum. Aplidium with its vertical barrel-shaped and longitudinally folded stomach also may be related to the Ritterellidae.
Thus, it is possible that even the newly defined family Polyclinidae is polyphyletic, the evolution of cloacal cavities proceeding in parallel in several evolutionary lines, viz. from both Protopolyclinidae and Ritterellidae. Convergetice, rather than a plylogenetic relationship, may also be the reason for similarities in the cloacal cavities and atrial apertures of many species of Synoicum (eg. S. suarenum n.sp.) and those in the angolanum species group of Eudistoma (Polycitoridae: see Kott 1990).
The 6 genera of the family Polyclinidac are Polyclinuin, Aplidiopsis, Synoicum, Sidncioides,

Aplidium and Morchellium. The last 2 are separated from the others by their vertical barrelshaped stomachs, which in Aplidium have a longitudinally folded wall, Morchellium has a mulberry-like stomach and 8 branchial lobes. Eight branchial lobes also occur in some species of Aplidium that were formerly assigned to the genus Sidnyum, which here is regarded as a synonym of Aplidium. Branchial papillae are present only in Polyclinum. The position of the ovary (in the thorax) distinguishes Sidneioides from the other genera. Polyclinum, Aplidiopsis and Sidneioides are distinguished from the other genera by a constriction between abdomen and posterior abdomen. Embryos are known to develop in a brood pouch in some species of Polyclinum, Synoicum and Aplidium, The brood pouch (when it occurs) of the former is at mid-thoracic level, while that of the last 2 is at the postero-dorsal cornet of the thorax.

The differences between Polyclinum and Aplidiopsis are often obscured. There is a particular problem in assigning those species of Potyclinum in which the branchial papillae are ephemeral (e.g. P. vasculosum). In Polyclinum the longitudinal muscles do not continue past the therax to form ventral abdominal and posterior abdominal bands as they do in some species of Aplidiopsis, but there also are species of Aplidiopsis with longitudinal muscles present only on the anterior part of the zooid. The small usually horizontal, and twisted gut loop of Polyclinum as opposed to the large vertical one of Aplidiopsis, is the only reliable difference, but sometimes it is difficult to interpret.
The larvae of Aplidium differ from those of the other genera in that they have ectodermal vesicles that separate directly from the larval ectoderm around the anterior end of the trunk. In all the other genera the ectodermal vesicles branch off a dorsal and a ventral pair of tissue strands that itail posteriorly through the larval test, one strand on each side of the dorsal and ventral mid-lines, respectively.
Aplidium is the most diverse of the genera, and is common in tropical and temperate waters of all the oceans: Synoicum is moderately diverse and commonly encountered in Australian waters. Both Aplidiopsis and Polyclinum are cosmopolitan. Polyclinum contains species with wide geographical ranges, but Aplidiopsis and Morchellium species are seldom recorded and must are known from restricted locations in temperate waters (sce below). Sidneioides is known
only from two species, one from Japancse and the other from Australian waters.

Key to genera of Polyclinidae

1. Stumath wall longitudinally folded Aplidium Stomach wall not longitudinally folded.........2
2. Branchial lobes 8 Morchellium Branchiallobes 6 3
3. Ovary in the thorax Sidnciaides

Ovary not in the therax 4
4. Constriction present between abdomen and postérior abdomen .5 Constriction not present between abdomen and posteriot abdomen........................ Synoicum
5. Gut loop voluminous, not twisted and always vertical; branchial papillae never present....... . Aplidiopsis Gut loop small, twisted and usually horizontal; branchial papillae usually present. Polyclinum

Genus Polyctinum Savigny, 1816

Type species: Polyefintion constellatum Savigny. 1816

The test is usually soft in preservative. Sand, though embedded in the surface layer in some species, is seldom present internally. The atrial lip is often long and muscular. It usually arises separately from the body wall anterior to the anteriorly directed opening which has a distinct sphincter muscle. However, in some species the lip is produced from the anterior rim of the aperture. The body musculature consists of fine longitudinal bands that fade out on the posterior half of the thorax and do not extend onto the abdomen and posterior abdomen. Transverse muscle bands are in the transverse branchial vessels between the rows of stigmata, but no other transverse muscles are present. Branchial papillae are present on the transverse vessels, although in a few species they are present only in juvenile zooids. The thorax is always longer than the abdomen. usually with from 10 to 20 rows of stigmata, and the atrial cavity is relatively large. The oesophagus curves ventrally to enter the smooth-walled stomach along its short dorsal margin. The whole gut loop is bent horizontally from the oesophagus, and at the same time twisted so that the descending limb
is anterior (or ventral) and the ascending limb posterior (or dorsal). The distal tip of the loop is also curved to the left and dorsally. The stomach is small and smooth-walled.
The gonads are in a sac-like posterior abdomen constricted off from the abdomen by a narrow neck. The vas deferens has a complicated course, joining the abdomen in the concavity on the left side of the centre of the pole of the gut loop. It then curves around the ventral border of the descending limb of the gut loop (the mid-intestine) and continues around on the right side of the gut, following its bend at the pole before extending anteriorly on the inside of the rectum to the atrial cavity. The male opening is at about mid-thoracic level near the bilabiate anus. The small ovary is usually surrounded by male follicles. The course of the oviduct has not been determined.
In many species there is degree of polymorphism in the shape of the posterior abdomen which is related to the reproductive condition of the zooid. In zooids reproducing sexually it is short and sac-like, joined to the left side of the gut loop by a narrow neck. It contains bunched testis follicles, a small ovary, and (in the posterior end) the V-shaped heart. In zooids in the vegetative phase the posterior abdomen is long and straplike. It is horizontally divided into buds that develop into replicated zooids. These long posterior abdomina often occur on zooids around the outer margin of colonies where growth is taking place, while in other parts of the same colony the postetior abdomina are short sacs. One or 2 moderately long, narrow vascular stolons extend out into the test behind the posterior abdomen.
Embryos are incubated either in the peribranchial cavity, or in a brood pouch constricted off from it at mid-thoracic level, near the anus, Larvae are small (the trunk length usually 0.6imm or less - only P glabrim has a trunk more than 1 mm long). They are unusually conservative throughout the genus, with 4 pairs of lateral ampullae, usually 4 median ampullae alternating with the 3 median adhesive organs, and clusters of epidermal vesicles along each side of the dorsal and ventral mid-lines. On each side, the dorsal vesicles are on terminal branches of a long strand of epidermal tissue extending back through the test from a point near the dorsal ampulla. Clusters of vesicles on each side of the trunk near the base of the tail are on the terminal branches of similar strands extending posteriorly on each side of the mid-ventral line, from about halfway along the ventral surface. Columnar epidermal cells form a cap on the tip of the ampullae, and sometimes on
the outer wall of the epidermal vesicles (see P. sacaculosum), The adhesive organs in this genus have long, narrow stalks and shallow epidermal cups and axial cones.
The branchial papillae are said to be the relicts of the papillae that support internal longitudinal vessels in the Cionidae, Diazonidae, and Phlebobranchia. Sometimes they are present in the younger zooids of a species but are not present in the larger, older ones (see P. vasculosum below).
Systems are either large with complex branching canals or they are simple and circular. Generally in this genus, sand (when it is present) is either embedded throughout the test, or it forms a sandy coating in the surface layer of test completely enveloping the colony. Naked areas on the upper surface over the zooid systems, such as occur in many Aplidiun species, are known only in a few species (e.g. P. festum Hartmeyer, 1905 from Mauritius and P. solum nom,nov.).
Problems in defining the species of this genus result from a high degree of intrageneric conservatism in both larval and zooid morphology, as well as changes that oocur with growth such as polymorphism in the posterior abdomen and changes (e.g. loss of papillae) in the branchial sac. The present studies suggest that wrong assignation of specimens on the basis of zooid similarities has resulted in apparent intraspecific variability in the presence of sand in the colony. The presence or absence of sand, and the form of the systems, together with the number of rows of sligmata and the number per row, and occasionally the shape of the posterior abdomen, constitute the principal means of distinguishing species.
The colonies of species of this genus often grow large, forming gelatinous masses up to 20 cm long, and this may also contribute to confusion in species definitions.
Species of Polyclinum usually have a wide geographic range. The genus is well represented in Australia being especially diverse in temperate waters where there are some common indigenous species (Table 5).

Key to species of Polyclinum recorded from Australia

1. Sand embedded in surface test 2

Sand not embedded in surface lestt.......... 10
2. Branchial sac wide with 18 or more stignata per row 3
Branchial sac narrow with fewer than 18 stigmata per row. 5
3. Stigmata in more than 15 rows 4

Stigmata in not more than 15 rows P. saturnium
4. Zooids in a single circular system per colony
lobe; brood pouch not present
P. orbitumn.sp.

Zooids not in a single circular system per colony lobe; brood pouch present P. Isutsuit
5. Atrial lip from upper border of the aperture. 6 Atrial lip from body wall anterior to the aperture .7
6. Colony with thin keel-like base \qquad
\qquad P. terranum n.sp. Colony without thin keel-like base \qquad
\qquad
7. Systems conspicuously circular \qquad P. incrustatum
Systems not conspicuously circular 8
8. Stigmata up to 17 per row; with brood pouch P. marsupiale

Stigmata up to 12 per row; without brood pouch .. 9
9. Stigmata in 14 or more rows \qquad P. solum nom. nov. Stigmata in fewer than 14 rows P. furgosum 10. Atrial lip from upper border of the opening P. mudum n.sp.

Atrial lip from the body wall anterior to the opening 11
11. Living colonies with translucent test; branchial papillae present P. glabrum

Living colonies with opaque test; branchial papillae not present \qquad P. vasculosum

Species recorded from waters adjacent to Australia

Polyclinum circulatum Sluiter, 1909 from Indoncsia is a flat, circular plate, sometimes with a short stalk. Three to 5 circular systems, each with 5 to 8 zooids are in each colony. Zooids have about 10 rows of 10 stigmata. Branchial papillae are not recorded. Stalks sometimes have sand but heads are naked.
Polyclinum complanatum Herdman, I899 ($>$ P. depressum Herdman, 1899) appears not properly assigned. 1t has a long abdomen distinguishing it from genera of Polyclinidae. It is said to have incubatory pouches packed with embryos (Herdman, 1899). It could be a species of P seudodistoma, no other known genus having a brood pouch as well as both a long abdomen and a posterior abdomen, although brood
pouches of Pseudodistoma cannot be said to bc 'packed with embryos'. The number of rows of stigmata is not known.
Polyclinum constellatum Savigny, 1816 from Mauritius, has flat-topped colonies attached by a small part of the basal surface. They are without sand, and have branching double rows of zooids radiating from circular common cloacal apertures. Polyclinumi festum: Kott and Goodbody, 1982, from Hong Kong, with large potato-shaped colonies, blue-green when living, and crowded stellate systems of zooids, may be a synonym of P. constellatum. The loaf-like P. constellatum; Michaelsen, 1923 from Hong Kong and other specimens from Hong Kong, Mozambique and St. Helena, all with radiating rows of zooids are probably also conspecific with P. constellatum, as Michaelsen (1923) thought them to be. The branchial sacs are relatively wide with 18 to 22 (16 to 18: Kott and Goodbody 1982) stigmata. Small papillae are present on the transverse vcssels. Further probably conspecific populations are from the Atlantic (Florida, the West Indies and possibly south to Rio de Janiero), and the Wcst Indian Ocean to Ceylon (Michaelsen 1923).
Polyclinum constellatum: Tokioka, 1967 has indistinct systems. Although the zooids, like those of P. constellatum, have 14 to 18 rows of stigmata with 15 to 20 stigmata per row (more in specimens from the Palau 1s), and distinct branchial papillae, the sandy coating on all Tokioka's examined specimens suggests they are not P. constellatum.
Polyclinum crater Sluiter, 1909 has simple circular systems, each with the branchial apertures surrounding a central cloacal aperture in a surface depression. The body wall has strong muscles. About 9 rows of 6 to 8 stignata are present. The outer surface of the test is smooth and slippery.
Polyclinum festum Hartmeyer, 1905 (see also Millar 1975) from Mauritius has flat-topped colonies with circular systems. Sand is present externally (around the base and outcr border, and sometimes along radii across the upper surface) as in Aplidiopsis anoyensis and related species (see below).
Polyclinum hospitale Sluiter, 1895, from Thursday 1. is smooth on the upper surface, with debris and sand on the under surface. Sluitcr did not see either cloacal openings or systems, but both are likely to be present - the atrial opening having the usual pointed lip associated with a cloacal system. The body wall is muscular - an unusual condition for Polyclinum. The gut loop (including the oesophagus) is shorter than usual for this genus, and is not twisted. There are no branchial papillae. It is probable that the colony is an Aplidium species.
Polyclinunt gelidus (Monniot, 1987) from Ncw Caledonia, with a brownish-yellow colony resembles P. vasculosum, having no branchial papillae. Monniot (1987) assigned the species to the genus Aplidiopsis,
TABLE 5. Summary of characters of species of Polyclinum recorded from Australia

Species	Biogeographic range	Range anticlockwise around Australia	Surface	Systems	$\begin{aligned} & \text { Atrial } \\ & \text { lip }^{2} \end{aligned}$	Stigmata: no. rows; max no./row	Branchial papillae	Larval trunk median length (mm)	Other
P. solum. nom. nov	WP,tr	Hervey Bay. to Heron 1	sandy	circular to double rows	S	14-18;14	none	-	long, posterior abdomen
P. fungosum	A,te	Bass Strait to NSW	"	"	"	12-13:14	small, pointed	0.55	
P. incrustatum	A,te	South Australia	"	"	"	15;14	"	0.6	
P. saturnium	IWP,tr	Heron 1.	"	"	"	8-12;20	"	0.45	
P. marsupiale	A,te	South Australia, Tasmania	"	*	*	16-13;17	tongue-shaped	0.5	brood pouch
P. 1sulsuii	WP,tr	NW Australia	"	circular	"	14-16;20	"	0.5	"
P. terranum	A,te	Cockbum Sd	"	"	R	16:15	pointed	0.7	"
$\begin{aligned} & \text { P. tenuatum } \\ & \text { n.sp. } \end{aligned}$	A,te	Southem Australia	"	"	*	13:12	.	\cdots	sand relatively sparse
P. orbitum n.sp.	A,te	Bass Strait	"	"	*	18-20;24	"	0.45	1 system/lobe
P. nudum n.sp.	A.te	Coffs Harbour	naked	circular to double row	\because	14-16;18	shallow rounded	0.5	soft, gelatinous test
P. glabrum	WP,tr	Heron I. to Lizard I.	"	branched	S	12-13;19	"	1.2	"
P.vasculosum	P,tr	Bass Strait	"	"		12-14:16	none	0.55	firm, gelatinous test

[^3]however its abdomen is characteristic of the genus Polyclinum.

7 Polyclinum nigrum Herdman, 1906, Irom Sri Lanka, has a smooth shiny surface, and circular depressions in the surface, which may have contained zowids, although these are not present. There is no evidence of the genus of this colony.
The type specimen of this species from Port Jackson (AM U33, Polyclimum nigrmm Herdman, 1899) and another (MV F59436) from the same locality lave been re-examined and found to be Sigillina (see S. nigra: Kott 1990). The zooids are contracted, possibly causing Herdman to misinterpret the length of the ocsophagus.

Polyclinum sundaicum (Sluiter, 1909), from the westcrn Pacific (Fiji, Indonesia and Hong Kong: see Kott 1981, Kott and Goodbody 1982) are small stalked or sessile sandy colonies each containing one or more circular systems. They are distinguished from P. fungosum and P. solum nom. nov. by their large branchial papillas.

Polyclinum tralatica Sluiter, 1913 from Aru I. is an irregularly lobed, cylindrical, gelatinous mass along a bryozoan or gorgonian stalk, Its outer surface grey with a pale violet hue. The body wall is moderately muscular. The species resembles P. vasculesum in the absence of branchial papillae and in its 10 rows of about 10 ln 12 stignmata

Polyclinum fungosum Herdman, 1886
(Fig. 25)
Polyclinum fungosum Herdman, 1886, p. 190.
Polyclinum marsupiale: Kott, 1976. p. 60.
Synoicum hypurgon: Kott, 1976, p.62.

Distribution

Ntw Record: Victoria (Bass Strait, QM G12748).
Previously Rrcorded: Victoria (Westernport MV F59365 F59431-2 Kott 1976). New South Wales (Port Jackson - Herdman 1886).

DESCRIPTION

External Appearance: The small (about 5 mm diameter) newly recorded specimen from Bass Strait is mutilated, possibly stalked, mush-room-shaped, with a firm, translucent test, an extemal layer of sand, and some sand internally. The ronids are crowded, obscuring the form of the systems. Larger (to 4 cm diameter) colonies (MV F59431) are soft, mushroom-shaped, fixed by a small part of base or with a small stalk. In
preservative they are collapsed, with a wrinkled, furrowed surface. Sand encrusts the sides and under surlace, is in patches on the upper surlace, and is sparse internally.

Internai Structure: Zooids are about 3 to 4nom long, with a narrow thorax, small horizontal

FIG. 25: Polyclinum fungosum - a, colony (MV F59431); b, zooid with entbryos in atrial cavity (MV F59431); c, dorsal pari of portion of branchial sac showing kink in transverse vessels (MV F59431); d, larva (QM G12748). Scales: a. $1 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm}$; \mathbf{c}. $0.2 \mathrm{~mm} ; \mathrm{d}, 0.1 \mathrm{~mm}$.
gut loop, and sac-like posterior abdomen. The branchial lobes are friangular and pointed, and the atrial lip is long and narrow. Six to 10 fine longitudinal muscles are present on the anterior half of the thorax. Fine circular museles are present in the transverse vessels between the rows of stigmata. The branchial sac is narrow, with 12 or 13 rows of 12 to 14 short oval stigmata. A short expansion of the transverse vessels on each side of the dorsal larguets in some of the zooids could have resulted from contraction of the transyerse muscle fibres in the vessels. The branchial papiliae on the margin of the transverse vessels are small, shallow, triangular protrusions about one to every one and a half stigmata.
The gut forms the usual small, horizontal loop with a smooth-walled stomach, a long duodenal area and ant oval posterior stomach. The sac-like posterior abdomen has a short neck and is pointed posteriorly. Male follicles are clustered behind and to the side of a relatively large ovary, which has up to 5 relatively large eggs and some small ones.

The Bass Strait specimen contains about 12 embryos in the right peribranchial cavity. Larvas have a row of median ampullae alternating with the adhesive organs and 4 lateral ampullae along each side. A ventral pair of rows of large epidermal vesicles expands into a postero-ventral clustet on each side beneath the tail. Corresponding rows are present on each side of the mid-dorsal line. The larval trunk is 0.4 to 0.5 mm long, and the broad tail barely reaches its anterior end. Each of the ampullae has a terminal cap of columnar cells, although these ane more conspicuous on the long. narrow median ampullae than on the rounded lateral ones.

REMARKS

The type specimen of this species (Herdman 1886) is a circular, dome-shaped cushion, 1.6 cm high, 3.3 cm in maximum dimension. It has a hard sandy external coating, Zooids are crowded in the colony, and systems were not determined. Long, narrow stigmata are in 10 to 12 tows of about 12 . Herdman did not observe any branchial papillae. The gut Joop is small, with a smooth stomach, and although Herdman did not observe it to be horizontal, it has the short oesophagus and short mid-intestinal region that is characteristic of Pobclinum, and it also has a polyclinid, stalked, sae-like posterior abdomen with the ovary surrounded by male follicles. The species apparently is assigned to the correct genus rather than belonging to Synoicum as Millar (1982) suggested.

Some of the zooids of the holotype contained larvae. Although the exact number present is not recorded it appears that there were more than one or 2 and that they were in the atrial cavity, as a brood pouch is not mentioned.
The crowded zooids, the narrow thotax, the number of tows of stigmata, and the form of the colony of the holotype and the newly assigned and recorded specimens are all identical. The only point of difference is the presence of small inconspicuous branchial papillae in the Victorian specimen. Herdman may have overlooked these as they are difficult to detect.

Tropical sandy species such as P. Isutsuii and P. saturnium have broader branchial sacs with more stigmata per row. Polyclinum incrustatum $\mathrm{n} . \mathrm{sp}$. is distinguished from the present species by its slightly more stigmata per row (14) and more Jows (15), and by its large tongue-like branchial papillae, The sympatric P. marsupiale also has larget branchial papillae, more rows of stigmata and more stigmata per row, and thinner more irregular colonies than the mushroom-like ones of the present species. It also has a brood pouch.

Polyclinum glabrum Sluiter, 1895
(Fig. 26)
Pobuclinuor giabrum Sluiter, 1895, p. 168; 1913, p, 71.

DISTRIBUTION

New Records: Western Australia (Montebeilo Is, QM GH5507), Qucensland (Capricom Group, QM GH5038-41 GH5563; Townsville Harbour, QM GH2094; Lizard 1, QM GH319 GH5024 GH5036-7 GH5042).
Previously Recorded: Indonesia (Sluiter 1895 , 1913).

DESCRIPTION

External Appearance: The colonies from shallow reefal habitats are irregular cushions, or robust, spreading sheets, up to 1 cm thick and 6 cm in maximum dimension, with soff, transparent test entirely free of sand, and orange zooids. Collector's notes describe them as 'soft orange' and 'chinese orange' (Ridgeway 1886). In preservative these cotonies are transparent and yellowish to a translucent, soft grey or beige colour. Commian cloacal apertures are relatively crowded, especially around the bonders of the colony. Some protrude from the surface on conical prominences, but others are sessile, itregular and extensive openings. Atrial lips of zooids are
in the test around the rim of the cloacal openings. In some preserved zooids, the tips of the atrial lips contain dark pigment. Cloacal systems are crowded, and zooids also are crowded along each side of the canals that radiate from the cloacal apertures.

FIG. 26: Pulyclinum glabram - a, colony (QM GH319); b, zooid relaxed with embryos in atrial cavity, anterior mows of stigmala obscured (QM GH319); c, portion of branchial sac showing dorsal languets and branchial papillae on the transverse vessels (QM GH319); d, larva (QM GH5563). Scales: a. $2 \mathrm{~cm}: \mathrm{b}, 0.5 \mathrm{~mm}: \mathrm{c}, 0.2 \mathrm{~mm}: \mathrm{d}, 0.4 \mathrm{~mm}$.

The colony from the Montebello ls is a large (maximum dimension 4 cm) flattened slab which, with a light coating of sand on one side, appears to have been lying on its side when collected. Originally it probably stood upright, attached to pebbles by its narrow base. Systems open on both sides of the colony. which has an irregularly subdivided surface
InTERNAL STRUCTURE: The zooids are about 4 mm Jong, with a large thorax, a small horizontal gut loop, and a spherical to lapering (QM GH2094) posterior abdomen. The atrial lip is long and moderately broad, and contains fine longitudinal museles, It extends along the ruof of the cloacal canal toward the cloacal aperture and ends in a single point or a fringe of up to 6 minute papillac. A small median papilla projects from the body wall just behind the atrial aperture. Fine longitudinal muscles are present over the antcrior part of the thorax. There are 12 or 13 rows of up to 19 oval stignata with the maximum number in rows 2106 . Rounded branchial papillae are on the transverse vessels, about one and a half per stigma. The gut loop is small and honzontal. The postcrior abdomen is attached to it by a relatively long neck. The posterior abdomen is cither saclike or (sometisnes) it tapers to a short vascular stolon that projects from its posterior end behind the heart.
Threc embryos are in the posterior end of the atrial cavity of specimens from the Capricorn Group collected in December, Lizard I. specimens collected in July, and 6 in those from Montebello Is collected in August. Larvae have a long (1.2 mm) trunk with median and lateral ampullae anteriorly, and dorsal and ventral clusters of ectodermal vesieles along each side of the mid-line.

REMARKS

Sluiter (I895) described the type specimen as a large naked cushion, less than lam thick, with a smooth surlace, without conspicuous systems, and with conspicuous branchial papillac. Although be believed this colony to be juvenile, both male and femalc gonads are present. The cloneal systems in the present specimens are so crowded that they are hard to distinguish, and in view of the similarities in the branchial sac, and the smooth-surfaced colonies without sand, they scem to be conspecilie with the Indonesian species.

The irregular shape and soft consisteney of the colony distinguishes it from the more regular and robust P. constellatum. The branchial papillac, the more numerous stigmata per row, and the
transparent test of the living specimens distinguish it from P. vasculosum. The larval trunk is unusually long for this genus.
Sluiter's specimen from Ambon (1895) was grey in preservative with a reddish-violet glimmer, but this does not occur in other known colonies.

Polyclinum incrustatum Michaelsen, 1930
(Fig. 27. Plate 6a,b)
Polyclinum neptunium: Michaelsen, 1930, p. 542 f. incrustatum. Kott, 1963, p. 83 (part, South Australian specimen).

DISTRIBUTION

New Records: South Australia (Golden 1., SAM E2145 QM GH4185; Hopkins I., QM GH4192; Margaret Brock Reef, SAM E2531; Perforated I., QM GH4141; The Gap, QM GH4163; Cathedral Rock, QM GH4145 GH5209; Nuyts Arch., SAM E2528). Victoria (Portland Harbour, MV 59434 F59437).
Previously Recorded: Western Australia (Bunbury, Albany - Michaelsen 1930). South Australia (Reevesby I. - Kott 1963).

DESCRIPTION

External Appearance: The colonies are thick sheets, sometimes with swellings, high convoluted ridges and irregularities on the surface. The common cloacal apertures are sessile or on small raised prominences about 5 mm apart. The zooids open all around the ridges and irregularities, as well as on the flat part of the colony. Sand is present in a single layer in the surface test. Sometimes it is interrupted by the prominences raising the cloacal apcrtures above the surface, but in other specimens these are also covered with sand. Embedded sand is only sparse in the internal test between the zooids, but the grains are moderately crowded between the zooid systems. Cloacal cavities are small, circular, and are confined to the area beneath the cloacal aperture. The zooids are arranged around these cavities. The atrial lip of each zooid in the system extends across the roof of the cavity and is inserted into the test around the rim of the cloacal apcrture. The branchial apertures open in a small surface depression surrounding each cloacal prominence.
Internal Structure: Zooids are about 8 mm long, with the narrow thorax about three-quarters of the total length. A small horizontally oriented gut loop has an almost spherical to long, cylindrical posterior abdomen connected to it by a short
narrow neck. There is a narrow vascular stolon from the posterior end of the posterior abdomen.
The atrial lip is long and narrow. It has denticulations on its free tip. The usual muscular atrial siphon projects forward to open into the base of the cloacal cavity around its outer margin.
The anterior part of the zooid, including the branchial lobes and atrial lip, contains black pigment. Fine longitudinal muscles (about 8) extend from the branchial siphon to about half way down the thorax. Fifteen rows of 13 or 14 longish-oval stigmata have transverse vessels with flat tongueshaped papillae along the margin, about one to every stigma. These are delicate and hard to see without staining.
The oesophagus is short, and curved ventrally to the small, smooth-walled, horizontal stomach. The distal end of the gut loop is bent to the left. The narrow neck connecting the posterior abdomen is attached in the pole of the gut loop in the concavity of this distal bend of the loop. It appears to have been drawn up onto this side of the gut loop, as the vas deferens moves to the outer curve of loop and follows the curve of the rectum where it lies adjacent to the duodenum, stomach and oesophagus. The rectum terminates in a 2 -lipped anus halfway up the branchial sac.
Up to 20 male follicles surround the ovary in the sexual posterior abdomen. The long (3 mm) vegetative posterior abdomen is in colonies collected in April from Perforated I. (QM GH4141) and in Fcbruary from Franklin I. (SAM E2528).
Up to 7 embryos are clumped together in the atrial cavity of zooids from Portland Harbour (MV F59434) but the collection date is not recorded. Larvae have a trunk nearly 0.6 mm long, with median and lateral ampullae, and posteroventral and antero-dorsal vesicles.

Remarks

Zooids of this species are relatively large and that, together with their distinct circular systems helps to distinguish them from other species.
Michaelsen (1930) believed specimens from Western Australia with embedded sand throughout to be a form of P. neptunium Hartmeyer, 1912 for which the type locality is South Africa. Hartmeyer's species has a more or less spherical stalked head, and, with the exception of one specimon (which has sand in the lower half of the colony), is without sand either on the surface or embedded (see also Millar 1962). The abdomen is clavatc when mature, and long and cylindrical when immature, the zooids arc in circular to dou-ble-row systems, and have conspicuous branchial

FIG. 27: Polyclinum incrustatum - a, general view of colony (QM GH4185); b, close-up view of surface of colony with common cloacal apertures surrounded by branchial apertures (MV F59434); c, zooid in colony showing atrial lip in test above cloacal cavity, and branchial apcrture amongst sand adhering to outer surface (QM GH4185); d, abdomen and vegetative posterior abdomen (QM GH4141); e, portion of branchial sac showing branchial papillae (QM GH4141). Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, 2 \mathrm{~mm} ; \mathbf{c - e}, 0.5 \mathrm{~mm}$.
papillac. Michaclsen (1930) and Kott (1963) assigned the western and southern Australian material to this species largely on the basis of the long vegetative abdomen, which now is known to occur in other species of this genus.

Michaelsen identified 2 forms, Polycinum neptunium f . typicam being the form in which sand is absent altogether or present only in the basal layer; and P. neptumiun f , incrustatum with sand throughout. The present sessile specimens from South Australia, with moderate amounts of embedded sand between the systems, with an almost continuous layer on the surface, and with strictly circular systems and raised cloacal apertures, appear to be conspecific with P. neptunium: Michaelsen, 1930 f, incrustatum recorded from Bunbury and Albany, but not with the stalked South African species. The stalked specimen from Western Australia (Kott 1963), does have characters in common with the South African species, but is distinguished by the flattened upper surface. It resembles Polyclinuon circulatum Sluiter, 1909, and may be a synonym. There is insufficient data available for the Shark Bay specimens of P. neptunium f. typicum (see Michaelsen 1930) with double rows systems and sand in the lower half of the colony to assign it to a species.

Polyclinum marsupiale Koth, 1963
(Fig. 28a-c. Plate 6c,d)
Polyclinum marsupiale Kott, 1963, p. 83 (part, not specimen from Heron $E . ?<$ P, saturnium). Not Kott 1976, p, $60(<P$. fungosum).
? Polyclinum macrophyllum: Kott, 1963, p. 82 (part, specimen from Roltnest I.).

Distribution

New Records: Western Australia (Albany, QM GH5059). South Australia (Kingston, QM G10138). Victoria (Deal I., QM GIO175; Portland, MVF 59433), Previously Recorded: Western Australia (Rottnest I. - AM Y1330 Kott 1963), South Australia (Victor Harbour - Kou 1963): Tasmania (Hunter I. - Kont 1963).

DESCRIPTION

External Appearance: Colonies are soft, rather irregular sheets, up to 4 cm in maximum
extent, investing weed; to upright structures to 1 m high with vertical flattened ribs (QM G10175). The zooids are in circular systems. The branchial apertures open to the surface between the sand grains that form an otherwise continuous Doat over the outer surface. Sand also is sparsely distributed in the soft, transparent internal test that forms thin partitions belween the crowded zooids. Dark pigment in the anterior part of the zooid can be seen where the branchial apertures open to the surface. Common cloacal apertures protrude from the surface.
The colonies from Albany (sea grass beds) are small (less than 1 cm in diameter) sessile and upright, covered with a layer of sand, and with characteristic zooids in circular systems.
Internal Structure: The zooids are small, 3 to 4 mm long, with a relatively large conspicuous thorax more than half the total length. Longitudinal muscles are fine and extend only over the anterior part of the thorax (about the fire 3 rows of stigmata). The branchial lobes are iriangular. The tongue-shaped, moderately muscular atrial lip, undivided to tridentate terminally, projects in front of the atrial aperture.
Stigmata are oval, and are in 12 or 13 rows with a maximum of 16 or 17 per row. The branchial papillae, on the transverse vessels are well-defined, tongue-shaped, and about one per stigma. The gut loop is small, horizontal with the pole of the loop curved to the left and the short neck of the posterior abdominal sac attached to the dorsal (concave) side of the gut loop.
The newly recorded specimen collected in September has 2 or 3 well developed embryos in the brood pouch which projects from the thorax about halfway up the thorax (opposite the sixth row of stigmata).
The larval trunk is 0.5 mm long. It has the usual median and lateral ampullae and postero-ventral and antero-dorsal bunches of numerous ectodetmal vesicles. The vesicles continue anteriorly in a row along each side of the median line. The tail is wound halfway around the trunk. The caps of columnar cells are more conspicuous on the narrow median ampullae than the rounded lateral ones.

REMARKS

Polyclinum marsupiale is a temperate species,

FIG. 28: Polyclinum marsupiale (QM G10138) - a, zooid with embryos in brood pouch; b, branchial sac showing papillae; \mathbf{c}, larva. Polyclinum nudum - d, colony (QM GH5388); \mathbf{e}, zooid with embryos in atrial cavity and ovary surrounded by male follicles in posterior abdomen (QM GH5387); f, thorax (holotype QM GH5391); g. atrial lip (holotype QM GH5391); h, larva (holotype QM GH5391). Scales: a, f, $0.5 \mathrm{~mm} ;$ b, $0.25 \mathrm{~mm} ; \mathbf{c}, 0.2 \mathrm{~mm} ; \mathbf{d}, 2 \mathrm{~cm} ; \mathbf{e}, \mathrm{g}, 1 \mathrm{rmm} ; \mathrm{b}, 0.1 \mathrm{~mm}$.

characterised by the layer of sand in the surface test, black pigment in the zooids, soft internal test, and crowded circular systems of small zooids. The tropical P. saturnium also has small zooids, and they have a simitar pharymx with 8 to 12 rows of 18 to 20 stigmata per row. However they lack the brood pouch of the present species.
The small colony from Rottnest I. assigned to P, macrophyllum : Kott, 1963 is similat to the newly recorded one from Albany and may be a specimen of the present species.

Kott (1963) reported an incipient brood pouch in a specimen from Heron I. she assigned to P. marsupiale. This has not been confirmed, and that specimen is possibly one of P saturnium.
The other temperate sandy species with dark pigment in the zooids. P. incrustatum, has firmer colonies, larger zooids, more conspicuous circular systems, more tows of stigmata, and fewer per row.

Polyclinum nudurn n.sp. (Fig. 28d-f. Plate 6e-g)

DISTRIBUTION

Type Locality: New Sonth Wales (Coffs Harbour, old jetty piles, 0.5 m , coll. A1MS Bioactivity Group 18.288, holotype QM GH5391: 16.2.88, paratype QM GH5387.
Further Records: New Soulh Wales (Coffs Harbour, QM GH5388 GH5390).

DESCRIPTION

External Appearance: Colonies are cush-ion- or dome-shaped, to about 9 cm in diameter and up to 1.5 cm thick. The test is soft and gelatinous, translucent internally, but with an opaque layer where the anterior ends of the zooids are crowded together at right angles to the surface.
Colonies are dark, black in preservative, and black immediately after removal from the substrate. The pholograph of a colony in situ, however, shows it to be whitish green (QM GH5387) or yellow (QM GH5388), or brownish red with yellow zooids (QM GH5390). Zooids are in irregularly branching relatively short double rows, one row along each side of canals that converge to common cloacal apertures about 5 mm apart. These apertures are sometimes sessile in the preserved colonies, bot in the living colony they protrude from the surface on conical elevations. Occasionally there are a few patches of sand adhering to the surface test, but most of the surface is naked, and there is no embedded sand.

Internal Structure: The zooids are large, about 1 cm long, of which the thorax and abdomen together are about half, and the stalked posterior abdomen the other half. Only very fine longitudinal muscles extend over the anterior part of the thorax, including an extensive prestigmatal area.
The branchial siphon is long, with large lobes around the aperture and a long, prebranchial area. The atrial tongue is long, extending out from the upper rim of a large opening. Its tip is variable, sometimes being a single point, or with up to 12 minute papillae along a straight edge. The muscles in the atrial lip form a fine, irregular meshwork. A small, medjan dorsal papilla is present just posterior to the atrial opening.
There are 14 to 16 rows of up to 18 relatively short, oval stigmata. Small branchial papillae (about one per stigma) are on the transverse vessels. The gut forms the usual small, horizontal loop characteristic of this genus. The vas deferens also makes the characteristic loop around the outside of the bend of the gut loop before extending around onto the other side.
The long, club-shaped posterior abdomen has a long narrow neck, joining it to the abdomen. It contains up to 24 , loosely bunched, large pearshaped male follicles. A small ovary is from one third to half the distance down the posterior abdomen, surrounded by male follicles. A long yascular stolon extends back from the tip of the posterior abdomen.
Up to 7 embryos at a time are crowded in the posterior half of the right peribranchial cavity of the holoytpe. They are progressively advanced postero-ventrally in the postero-dorsal quarter of the atrial cavity, then anteriorly and dorsally in the postere-ventral quarter.
A tailed larva has a trunk 0.5 mm long, with the tail wound about three-quarters of the way around it. A large otolith and ocellus are in the atrial cavity. A lateral ampulla is on each side of each of the 3 median adhesive argans, Also there is a median dorsal and a median ventral ampulla. Patches of epidermal vesicles are antero-dorsal and postero-ventral.

Remarks

The present species is unusual in having the atrial tongue arising from the upper rim of the atrial aperture (as in Polyclinum orbitum n.sp. and P. tenuatum n, sp.). Like P. orbitum n .sp, the larvae lack median ampullae.
The long club-shaped posterior abdomen is unique. It differs from that of those Polyclinum spp, which have a long posterior abdomen only
in the vegetative phase. The long posterior abdomen of the present specics has mature sexual organs in it, and in that it resembles P. solum nom. nov: However, although the latter species has similar colonies, it is distinguished from the present one by its smaller zooids, relatively smali posterior abdomen with fewer and smaller male follicles, fewer stigmata in each row (i.e. a narrower thorax), and its lack of branchial papillae.
The colonies resemble some more fleshy ones of P. vasculosum. However, the cloacal canals of the present species do not branch as much, the atrial tongue is not separate from the opening, it has branchial papillae, and it has a long posterior abdomen in its sexual phase.

Polyclinum orbitum n.sp.

(Fig. 29)

DISTRIBITION

Type Locality: Victoria (Nincty Mile Bcach, 10 km SW Seaspray, 560 m offshore calcenarite necf, 12 m depth, fast currents, coll J.E. Watson August 1977, holotype QM G12730, paratype QM G12731).
Fimpther Recurds: None.

DESCRIPTION

External Appearance: Colonies are a number of trumpet-shaped lobes up to 1 em diameter at the wide. free end, and 2 cm long. narrowing basaily to a common stalk. The outer surface is covered with sand, but there is no sand in the soft internal test. Zooids form a single circular system of up to 8 zooids in each lobe. Branchial apertures, around the outer rim of the upper free bonder are directed laterally. The test is raised into a rounded swelling oves the anterior end of each zooid, around the margin of the upper, free end of each lobe. A protuberant cloacal apenure is in the centre of the upper surface.

Internal Structure: Znoids are up to 1 cm loug, of which the thorax and abdomen together emmprise less than half the Jength. The abdomen is small, and there is a particularly long, narrow neck, about half the length of the posterior abdominal sac, altaching it to the gut loop. Thus, posterior abdomina lie in the basal common stalk of the colony.
The branchial fobes are well defined. The atrial lip is large and pointed, nsing from the anterior rim of the anteriorly directed atrial aperture. Eighteen to 20 rows of stigmata each have 22 to 24 stigmata. Transverse vessels have conspicu-
ous rounded papillae (about one to every 1.5 stigmata).
The particularly small gut loop is horizontal. The ovary is surrounded by and mixed with male follicles in the tear-drop-shaped to long fusiform posterior abdomen.

One or swo embryos are in the peribranchial cavity of the type specimens. The larval trunk is 0.45 mm long, and the tail is wound three-quarters of the way around it, The 3 median adhesive organs are wide and shallow with thick stalks and wide, shallow axial cones. Four lateral ampullat with eniarged ectodermal cells over the tip of each are present along each side of the adhesive nrgans. Median ampullae are not present. A row of ectodermal vesicles are present along each side of the mid-ventral and mid-dorsal lines, but a pos-tcro-ventral clump was not detected. The otolith is larger than usual, and in one larva 3 otoliths are present (QM G12731).

Remarks

The species is distinguished by its simple circular systems. the shape of the colonies, the linge neck connecting the posterior abdomen to the gut loop, and the large branchial sac. Millar (1973) described a similar Polyclinum from the Brazilian Shelf which. however, has a narrow branchial sac with only half the stigmata of the present species.
The species is umusual in having the atrial lip continuous with the anterior rim of the openingThe larvae are unusual in the genus in the absence of median ampullae, and in having fewer ectodermal vesicles than usual. These larvae are also amongst the smallest known in this genus.
The colones resemble those of Synoicum spewartense (Michaelsen, 1924) from New Zealand (see Millar 1982). Generic characters, including the absence of branchial papillae, as well as its purple colour, distinguish the New Zealand species.

Polyclinum saturnium Savigny. 1816
 (Fig. 30)

Polycioum sarumium Savigny, 1816, p.190. Hartmeyer. 1915. p.424. Michaclsen, 1920, p.9. Not Tokioka, 1962, p. 260 ($<$ P. ©stutsuii). Nut Rho, 1966. p.212; 1471, д.108; 1975, p.126 (< P. rsutsuii).

Polycinum vasculosum: Tokioka, 1967, p. 51 (part, specimen from Baliwasan, Philippines).
Polycimum marsupinlle: Kern, 1963. p. 83 \{parl, Heron I. specimeni.

FIG. 29: Polyclinum orbitum n.sp. - a, colony (paratype QM G12731); b, zooid with 2 small embryos in atrial cavity (paratype QM G12731); c, portion of branchial sac showing branchial papillae on transverse vessels (holotype QM G12730); d, atrial opening with lip (holotype QM G12730); e, larva (paratype QM G12731). Scales: a, $5 \mathrm{~mm} ; \mathrm{b}, 0.5 \mathrm{~mm} ; \mathrm{c}, \mathrm{d}, 0.25 \mathrm{~mm} ;$ e, 0.1 mm .
? Polyclimum isutsuii: Tokioka. 1967, p. 47 (part, specimen from Baliwasan, Philippines).

Distribution

New Records: Western Australia (Dongara, WAM 280.83). Queensland (Heron 1., QM GH5034-5 GH5260 GH5568).
freviously Recorded: Sucz, Red Sea (Savigny 1816, Hartmeyer 1915. Michaelsen 1920). Philippines (Baliwasan - USNM 11648 Tokioka 1967).

DESCRIPTION

EXTERNAL APPEARANCE: The re-examined colonies from the Philippines as well as the Heron 1. colony are cushions up to 1.0 cm in diameter,
with a layer of sand externally. The intemal test is soft and transparent. Zooids are arranged in circular systems, and the surface layer of sand is interrupted where they open to the surface. Sometimes the zooids extend along each side of short canals that radiate from the apertures to form stellate systems. The zooids are yellow in freshly preserved material with purple in the test above them. In the living specimens the zooids are 'burnt amber' or 'aster purple' and the test translucent. One juvenile colony is recorded as having bright red pigment in the zooids and the test.

Internal Structure: Zooids are about 4 mm long, with a moderately long neck joining the posterior abdomen to the abdomen. The atrial lip

FlG. 30: Polyclinum saturnium - a, sandy surface of colony with large common cloacal aperturcs surrounded by branchial apcrtures (QM GH5034): h, zooid with 9 embryos in atrial cavity, abdomen twisted (QM GH5034); c, portion of branchial sac showing transverse vessels with papillac and dorsal languets (QM GH5035); d, larva (QM GH5035). Scales: a, $2 \mathrm{~mm} ; \mathrm{b}, 0.5 \mathrm{~mm}$; c, 0.25 mm ; d, 0.1 mm .
is moderately long and narrow with about 6 pointed denticulations on its terminal (straight) edge. Zooids have 8 to 12 rows of about 20 short. oval stigmata and about the same number of conspieuous, flat, tongue-shaped branchial papillae on the transverse vessels. These papillae are even more conspicuous anteriorly than posteriorly.
The gut forms the usual twisted loop. The bilabiate anus is halfway up the thorax. A group of about 8 large male follieles are clustered in a more or less spherical mass around the ova in the posterior end of the postcrior abdomen.
About 5 embryos are seattered in the right peribranchial cavity of speeimens collected from Bahiwasan (Philippines) in January (USNM 11540). Up to 10 cmbryos are present in the postero-dorsal quarter of the atrial cavity in specimens from Heron I. collected in May (QM GH5035). Tailed larvac have a trunk of 0.4 to 0.5 mm , with the tail wound about three-quarters of the way around it. Median and lateral ectodermal ampullac have terminal eaps of enlarged eetodermal cells. Paired rows of vesicles are antero-dorsal and posteroventral.

Remarks

The absence of the brood pouch distinguishes these specimens from P. Isursuii (tropical) and P. marsupiale (temperate) which are also sandy, and have broad branchial saes and eireular or stellate systems. Poljclinum incrustatum and P. solunn nom. nov. are also sandy species but they have narrower branchial saes. The larvac have fewer ampullary vesicles than most other species of the genus.
The small specimen with only 8 rows of stigmata from Baliwasan assigned to P. Psussuii by Tokioka (1967) seems more likely to be a specimen of the present speeies in which branchial sacs generally are shorter than in P. Suusuii. The other small specimen (P. wasculosum: Tokioka, 1967 < P. saturnium) from Baliwasan has 10 to 12 rows of stigmata, as do the present colonies from Heron I. while P. tsutsuii has 14 to 16

Polyclinum solum nom. nov.
(Fig. 31)
Polychinum sabulosum Sluiter, 1909, p. 96
FIG. 31: Polyclinum solum nom. nov. - a, sandy surface of colony with protuberant common cloacal apertures surrounded by crowded branchial apertures (QM GH5023); b, zooid with single embryo in atrial cavily (QM G9293): c, portion of branchial sac (QM GH9293). Scales: a, 2 mm ; b, 1 mm ; c, 0.25 mm .

DISTRIBUTION

New Records: Queensland (P1. Lookout, QM GH5273; Hervey Bay, QM G9293 G9295 GH497880; Tannum Sands S. of Gladstone, QM GH4977; Wistari Reef, QM GH5023; Heron L, QM GH5202 GH5273)
Previously Recorded: Indonesia (Sluiter 1909).

DESCRIPTION

EXTERNAL APPEARANCE: The colonies are rounded cushions to 4 cm in greatest extent and up to 1 cm high. They have a single layer of sand grains adhering to the surface. Sometimes this is absent from the test over the systems, although it is present between and around them (QM GH5023). The intemal test is very soft, transparent and free of sand. The eloacal apertures are on wart-like prominences about 3 mm apart in the naked areas on the upper surface. Crowded zooids, some in short double rows, surround the eleacal apertures, and converge to them. Thoraces and abdomina are in the upper half of the colony and posterior abdomina in the lower half. There is no pigment in the test of the preserved specimens.

InTERNAL STRUCTURE: The zooids are slender, 6 mm long, of which the thorax is aboul half. The abiomen is relatively short, but the loop is vertical rather than bending horizontally. The posterior abdomen is narrow and relatively long, more or less club-shaped, its posterior half slightly expanded. A fine vascular stolon extends from the tip of the posterior abdomen. Zooids contain minute dark pigment cells scattered through the body wail.

The 6 branchial lobes are triangular and pointed. A long, narrow atrial tongue extends from the body wall antenior to the muscular, for-ward-projecting atrial siphon. Six fine longitudinal muscles from the branchial siphon fade out on the anterior part of the thorax.

Fourteen to 18 rows of oval stigmata have 10 to 12 stigmata on the right and 12 to 14 on the left. There are some fine muscles in the branchial vessels, but there are no branchial papillae. The small smooth-walled stomach is halfway down the abdomen, with a moderately long duodenal area behind it. The vertical gut loop is twisted slightly so that the descending limb is ventral to the ascending limb, and the distal part of the loop is flexed slightly to the left. The rectum extends halfway up the thorax and the anal border is bilabiate.

Six to 10 male follicles are bunched or in an irregular double row in the posterior half of the
long posterior abdomen, which is about twice the length of the abdomen. As they develop, they fill the whole of the posterior abdomen. The ovary is just anterior to them.

Colonies collected in November (QM GH4980) are in an active vegetative condition, those collected in May (QM GH4977) have mature male follicles.

REMARKS

Characteristics of the present species are the single layer of sand externally, the conical protuberant cloacal apertures, the narrow zooids with relatively few stigmata per row but numerous rows, the long narrow posterior abdomen with the gonads in its posterior hall, testis follicles in an irregular double now, and the absence of branchisl papillae. The holotype, from Indonesta, has a small tear-drop shaped posterior abdomen, like one of the juvenile colonies in the present collection (QM G9295), The Indonesian colony was stalked, and conical protruding cloacal apertures are not reported. However there is little else to separate the newly recorded specimens from it.

Polyclinum tenuatum n.sp. has similar (but smaller) crowded circular systems to the present species, but its zooids are smaller, branchial papillae are present, and the thorax is shotter. Polyclinum constellatum: Tokioka, 1967, has sand in the surface test, as does the present species. However, it has very numerous stigmata per row (15 to 20 and 40) and conspicuous branchial papillac. Polycliman saturnium has similar colonies with prominent cloacal apertures and an external layer of sand. However it has a wide branchial sac with conspicuous papillac, relatively few rows of stigmata, and it lacks the narrow posterior abdomen of the present species.

Polyclinum solum nom. nov. replaces the name P. sabulosum Sluiter, 1909 for the present tropical species. The latter name is preoccupied by Polyclinum sabulosum (Lahille, 1890), which is a junior synonym of the northem hemisphere Polyclinum aurantium Milne Edwards, 1842.

Polyclinum tenuatum n.sp.
(Fig. 32. Plate 7a)
Synoicum papilliferum: Kott, 1963, p. 87.

DISTRIBUTION

Type Locality: Westem Australia (Shelly Beach, Nomalup, 29.1.39. holotype AM Y2261; paratypes AM Y7356).

Further Record: South Australia (Cape Jaffa, QM GH5444).

DESCRIPTION

EXTERNAL APPEARANCE: The colonies are fleshy sheets, up to 5 mm thick, to 5 cm in maximum extent, with an irregular outline, rounded borders, and a flat and even upper surface which has a light dusting of sand. The colonies are fixed to the substrate by irregular processcs from the whole of the undersurface. Sand is sparse internally. Circular systems of 10 to 12 zooids have slightly protuberant common cloacal apertures in the centre of each system. Cloacal apertures are 2 to 3 mm apart.

Internal Structure: The thorax and abdomen arc together about 3 mm long. The posterior abdomen is short and sac-like or lengthened to a club-shape. Finc longitudinal muscles are confined to the anterior part of the zooid. The straplike atrial tongue is produced forwards from the upper rim of the atrial siphon, which protrudes from the body wall. Five minute pointed papillae form a [ringe along the straight tip of the atrial lip. A medial dorsal papilla projects from the body wall posterior to the base of the atrial siphon.

Thirteen rows of up to 12 relatively short, oval stigmata are separated by transverse vessels with about one conspicuous conical branchial papilla per stigma. The small, horizontal gut loop is twisted and the distal part of the loop curves forwards as is characteristic for the genus. The posterior abdomen, a short sac in its scxual phase. but long and club-shaped in the vegetative phase (QM GH5444), is artached by a narrow neck to the concavity of the distal curve of the gut loop.

REMARKS

Kott (1963), overlooking the branchial papillae and other characteristic polyclinid fcatures (including the flexure of the gut loop and the constriction between abdomen and posterior abdomen), assigned these 3 colonics to Synoicum papilliferum on the basis of the dorsal papilla. This structure has since been found in many Polyclinum as well as Synoicum species.

The present species has a layer of sand on the upper surface, crowded circular systems, and the atrial lip from the upper rim of the aperture like P. solum from the central Queensland coast. However P. solum has a longer thorax with more rows of fewer stigmata, and lacks branchial papillae altogether. Polyclinum terranum n.sp. has similar branchial papillae and atrial lip, but its

FIG. 32: Polyclinum tenuatum n.sp. - a, surface of colony showing zooids in circular systems with central common cloacal apertures (paratype AM Y 1356); b, thorax and abdomen (QM GH5444); tip of atrial congue (paratype AM Y1356). Scales: a, 1 mm ; h, $0.5 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.
zooids are larger, and its colonies have a keel-like structure anchoring them to the substrate.

Polyclinum terranum n.sp,
(Fig, 33, Plate 7b,c)

Distribution

Type Locality: Western Australia (Rockingham, $32^{\circ} 15.7 \mathrm{~S}$ 115 $37.1 \mathrm{E}, 15 \mathrm{~m}$, coll AIMS Bioactivity Group 21.3.89, holotype QM GH5460).
Further Records: None.

DESCRTPTION

External Appearance: The colony consists of extensive hard, robust zooid-bearing lamellae up to 1 cm thick, 3 cm across the upper surface and 6 cin along its length, standing vertically above the substrate, Along the upper edge the thick zooid-bearing part curves over to form a round margin. Along the underside of the zooid bearing part, the colony abruptly changes to a keel-like flange (up to 0.5 cm thick, 5 cm deep) which is hard, brittle and stiff with embedded sand. This flange appears to have been embedded in sand, atthough bere and there it suddenly jncreases in thickness to accommodate zooids, and it may have been above the surface of the substrate in those places.
The colony is complex, branched and folded so that lamellae lie in parallel against one other, Sometimes there are 2 basal keels attached to the one zooid-bearing part of the colony. Zooids are arranged in circular systems, about 3 mm diameter, opening on the upper surface of the zooidbearing part of the colony, Common cloacal apertures protrude from the surface, Patches of sand are present on the upper surface of the zo-oid-bearing part of the colony, and some is present internally, but it is sparse. The test is tough and zooids, tightly enclosed in it, are hard to remove. The atrial lip is inserted into the rim of the cloacal aperture and is particularly difficult to remove entire. In preseryative the test is transparent, purple, but living specimens are a dark pur-ple-brown, and opaque.

Internal Structure: The thorax and abdomen together are about 4 mm long, of which the abdomen is only about ore quarter. Body wall musculature consists of about 6 fine longitudinal bands extending halfway down the thorax. Branchial apertures are small, with 6 pointed Iobes, The atrial lip is long, moderately muscular with dorsal muscle bands extending along each side and transversely across the lip. The lip usually is
pointed, terminating in 2 or 3 small papillac. The anterior part of the circular sphineter muscle of the atrial aperture is in the base of the atrial lip. and the lip is thus associated with the anterior rim of the aperture. A median dorsal papilla is behind the atrial aperture.
Sixteen rows of oval to rectangular stigmata with 15 in the middle rows are separated by transwerse vessels containing the usual groups of transverse muscles. An extensive imperforate area of branchial wall is along each side of the endostyle. The transverse vessels have conspicuous, almost triangular branchial papillae, about one per stigma. The dorsal languets are small, only about twice the length of the branchial papillac.
The small gut loop has the usual twist distally, a smooth-walled stomach, long duodenum, and complicated course for the vas deferens. The bilabiate anus is halfway up the branchial sac. The posterior abdomen is tear-drop-shaped with a narrow neck attaching it to the abdomen. It contains. mature gonads in the holoytpe colony, consisting of about 15 male follicles and 2 or 3 large eggs. Up to 2 embryos are in a brood pouch attached to the thorax by a narrow stalk, at the level of the anus.
Larvae have a trunk 0.7 mm long with 2 median ampullae in each interspace between adjacent adhesive organs, 4 lateral epidermal ampullae on each side, and large postero-ventral and anterodorsal clusters of epidermal vesicles on each side. Conspicuous caps of enlarged ectodermal cells are on the tips of the ampullae.

Remarks

The present species, known only from its type locality off Rockhampton, resembles the southenn Australian P - incrustatuen and P. tenuatum in its circular systems. The Jatter species also bas large branchial papillae and its atrial lip directly associated with the aperture.

Quite apart from the unique colony with its flat, brittle, keel-like extension projecting down into the substrate, P. terranum has more rows of stigmata and more stigmata per row than P. temeatum. Althongh it has a similar number of stigmata to P, incrustatum, the latter species does not have a brood pouch. The brood pouch in the present species resembles that of P. marsupiale which, however, does not have the regular circular systems of the present species, and has fewer rows of stigmata and a slightly smaller 0.5 mm trunk) larva.

FIG. 33: Polyclinum terranum n.sp. (holotype QM GH5460) - a, portion of colony showing orientation of zooids in section at each end; \mathbf{b}, zooid with 2 embryos in brood pouch; \mathbf{c}, portion of branchial sac showing branchial papillac. d, larva. Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm} ; \mathrm{c}, 0.2 \mathrm{~mm} ; \mathrm{d}, 0.1 \mathrm{~mm}$

Polyclinum tsutsuii Tokioka, 1954

(Fig. 34)
Polyclinum Isursuii Tokioka, 1954a, p.240; 1967, p. 47. Polyclinum satumium: Tokioka, 1962, p.260. Rho, 1966, p 212: 1971, p.108; 1975, p. 126.
Polyclinum vasculosum: Tokioka, 1967, p. 51 (part, specimen (rom Marianas 1s).
Polyclinum pute: Monniot and Monniot, 1987, p. 84. Monniot, 1987, p. 514.
?Polyclinum loxum Van Name, 1945, p. 71.

DISTRIBUTION

New Records: Western Australia (W. of Cervantes: WAM475.91 476.91. Queensland (Heron J., QM GH5609).
Previously Recorded: Moorea, Tahill (Monniotand Monmol 1987). New Caledonia (Momiot 1987). Japan (Tokhara Is - Tokioka 1954a; Osaka, Sagami Bay Tokioka 1962). Marianas Is (USNM 11540 Tokioka. 1967). Korea (Rho 1971, 1975). ? Easteru Pacific (Gulf of California - Van Name 1945).

The species has a wide longitudinal as well as latitudinal range in the Pacific Occan.

DESCRIPTION

EXTERNAL APPEARANCE: Some colonies (WAM475.91) are sessile, rounded to wedgeshaped lotes, the borders sometimes spreading out in sheets over the substrate, other colonies are sheet-like and investing (USNM 11540). The external sandy coating often is light and interrupted on the upper surface leaving bare patches. Sand grains are sparse in the internal test. The zooids are in a crowded layer around the outside of the colony. The external layer of sand is interrupted where the zooids open to the surface and the darkly pigmented anterior ends of the zooids are seen, evenly spaced over the surface. Zooids are difficult to remove from the test.

The actual arrangement of zooids is difficult to determine in some colonies, but in others they are seen to be arranged in crowded circular systems with the atrial lip inserted around the rim of the central common cloaca. However, it is possible that some cloacal canals with zooids along each side, radiate from the apertures.

INTERNAL STRUCTURE: Zooids are about 3 mm long, including the short, tear-drop shaped posterior abdomen with a short neck attaching it to the abdomen. There is a posterior vascular stolon from the posterior end of the posterior abdomen.

FIG. 34: Polyclinum tsutsuii - a, zooid with 3 embryos in atrial cavity (WAM 475.91); b. larva (WAM 476.91). Scales: a, $0.5 \mathrm{~mm} ; \mathrm{b}, 0.1 \mathrm{~mm}$.

The atrial aperture is well anterior and the body wall projects dorsally so that the aperture is directed anteriorly. The atrial tongue is moderately long and fleshy, and sometimes has a serrated tip. Eight short, fine muscle bands on each side radiate from the branchial aperture over the anterior part of the body but they become finer posteriorly and only oecasionally can be distinguished extending the whole length of the thorax. The branchial sac has 14 to 16 rows of about 18 to 20 stigmata per row. The transverse vessels have about one tongue-shaped papilla per stigma.
The gut loop is horizontal, lying close behind the thorax, with the distal part of the loop tumed to the left. About 8 relatively large male follicles surround the ovary in the posterior abdomen.
Colonies taken in April have 3 embryos are in a brood prouch which projects from the dorsal part of the peribranchial cavity at about the level of the sixth row of stigmata. The larval trunk is $0,5 \mathrm{~mm}$ long, with lateral and median ampullae alternating with the shallow, stalked, median adhesive organs. Eetodermal vesicles continue anteriorly in a row along each side of the median line from postero-ventral and antero-dorsal clurnps. There is an otolith and ocellus. The tail is wound almost three quarters of the way around the trunk. The tips of the ampullae have caps of enlarged ectodermal cells.

Remarks

The species is distinguished from P incrustatum, which also has sand confined to the outer layer of test, by its wide branchial sac with 18 to 20 stigmata per row (instead of about 13), and its large larvae in a brood pouch rather than free in the atrial cavity. Polyclinum incrustatum has small, distinct circular systems with conspicuous projecting cloacal apertures which also distinguish it from the present species.
The sandy P. solum from the northeastern coast of Australia and Indonesia lacks branchial papillae; and has a long posterior abdomen with ganads in its posterior half, and a narrow branchial sac with only 8 to 10 stigmata per row.
Polyclinum saturnium, another sandy species is separated from the present one by the absence of a brood pouch, but has many other characters in common including a moderately long posterior abdominal neck and a broad branchial sac with about 20 stigmata per row. Specimens assigned to P. saturnium from Korea and Japan (see Tokioka 1962; Rho 1966, 1971, 1975) have the brood pouch chatacteristic of P. ssursuif.
Polyclirum lavom Van Name, 1945, from the

Gulf of California has potato-shaped colonies, Van Name thought this species could be a synonym of P. saturnium Savigny, 1816 (from the Gulf of Suez). However, embryos in P. laxum are probably in a brood pouch (see Van Name 1945) as they are in the present species but not in P. saturnium. The only difference evident between the Western Austratian and the eastern Pacific specimens are that the latter have a longer oesophageal neck and the zooids do not seem to be so crowded.

Although Tokioka thought them to be unique, the short longitudinal thoracic muscles do occur in other species of this genus.

Polychinum vasculosum Pizon, 1908
(Fig. 35)
Polyclinam vascalosum Pizon, 1908, p.223. Tokioka, 1967, p. 51 (part, specimens from Hawaii).
Polyclinum macrophyllum Michaelsen, 1919, p.82; 1930, p. 546 subsp. phoriar. Hastings, 1931, p. 105 subsp, phortar, Kott, 1963, p. 82.
? Polyclinum festum: Van Name, 1918, p. 162.

Distribution

New Recoros; Western Australia (Broome, WAMIO23.83). New South Wales (Arrawarra, QM GH4986), Queensland (Pt Lookout, QM GH4981 GH4984; Myora, QM GH4985 GH4990 GH5027; Bribic L, QM G10124; Kawana Waters, QM GH4989, Noosa, QM GHI496; PI Vernon, QM GH4991 GH4993 GH5028: Bargara, QM GH4983; Gladstone, QM GH4988; Capricorn Group, QM GH4992 GH4994-5018 GH5023-33 GH5185 GH5279; Lizard I., QM GH4982 GH5017 GH5025 GH5 261-2 GH5268; off Cairns, QM GH4987).
Prevtously Recorded: Western Australia (Shark Bay - Michaclsen 1930). Queensland (Capricom Group - Kott 1963; Sarina, Mackay - Kott 1963; Low Is - Hastings 1931). ? Philippimes (Van Name 1918). Indonesia (Pizon 1908). Hawaii (USNM 11755 Tokioka 1967). West Indian Ocean (Michaelsen 1919), The species apparently is a tropical one.

DEscriftion

External Appearance: Colonies are naked, fleshy, extensive investing sheets or cushions to about 2 cm thick. In life thinner sheets are brown, yellowish brown and beige internally. Thicker specimens ate greenish-black, to black, often with some yellow, and 'mummy brown' (Ridgeway 1886) internally, In preservative they are brown, red-brown to pink. The test is firm and gelatinous, and does not have embedded sand.

Zooids are arranged in rows along each side of branching canals that radiate from the cloacal apertures. In relatively thin colonies with thin surface test the cloacal apertures are completely sessile, sometimes opening out along the top of the parts of the cloacal canals adjacent to them. They have denticulate borders which contain the tips of the long atrial lips of the zooids in their
vicinity. Zooids further away have their atrial lips stretched out with their tips inserted into the test above the canals. The atrial lips contain brown pigment making them very conspicuous through the surface test, outlining not only the cloacal apertures, but also the branching canals, which, when they are crowded, often appear to form a network.

FIG. 35: Polyclinum wasculosum - a, b, zooids (\mathbf{a}, QM GHI 496 with sexual posterior abdomen; \mathbf{b}, QM GH4984 with vegetative posterior abdomen); c, colony showing atrial lips along each side of cloacal canals that converge to common cloacal apertures (QM GH4982); d, atrial lip (QM GH4984); e, gut loop (QM GH4984); f, larva (QM GH4985). Scales: a, b, $1 \mathrm{~mm} ; \mathbf{c}, 2 \mathrm{~mm} ; \mathbf{d}, \mathbf{e}, 0.5 \mathrm{~mm} ; \mathbf{f}, 0.1 \mathrm{~mm}$.

Thicker colonies, which are recorded from mainland rather than coralline habitats, have less conspicuous systems, and cloacal and zooid apertures. The thick surface test obscures the openings, the denticulations around them, the insertion of the tips of the atrial apertures into the test and the position of the zooids relative to cloacal canals. Sometimes common cloacal apertures are raised on slight conical prominences about 1 cm apart and are evenly distributed over the surface. In other specimens each branchial and cloacal aperture is depressed into the surface, In some colonies zooid-free areas of test separate the systems, which have cloacal apertures about 5 mm apart. In others, the cloacal systems are contiguous and the only zooid-free parts of the test are those between the rows of zooids.

Vesicles (about 0.04 mm in diameter) are evenly scattered in the surface test, about 0.3 mm apart, amongst zooid openings, although they often are obscured by zooids and pigment.

Internal Structure: Zooids in the thinner colonies are more easily removed from the lest than those in the thicker ones, which bave the atrial lips embedded in thicker, firmer test. The thorax is large and roomy (up to 3 mm long). Usually the smaller abdomen (about 2 mm long) is bent at right angles to the thorax. The posterior abdomen varies from the short, sac-like sexual organ to the long (up to 3 mm) strap-like vegetative one. A delicate, sometimes branched, vascular stolon extends into the test from the end of the posterior abdomen.

The branchial lobes are well-formed and triangular. The atrial lip is long and brodd, and usually constricted at the base. Its shape is variable, being tongue-shaped or short and broad with up to 7 denticulations on its outer edge, or leaf-shaped, tapering to a single point. It contains longitudinal muscle bands that extend into it from the dorsal side of the branchial siphon. These divide into separate fibres towand the sides and tip of the lip. The atrial aperture surrounded with circular museles protrudes forwands on a short siphon, beneath the atrial lip. There is a median dorsal papilla protruding from the body wall posterior to the atrial siphon. About 10 to 15 fine longitudinal thoracic muscles extend from the branchial siphon to about one third of way down the thorax. There are 12 to 14 rows of short oval to rectangular stigmata, the latter being in larget, mature zooids. The donsal languets are to the left of the mid line, and there are 2 more stigmata on the left than on the right side of the zooid. Stigmata vary
from 8 on the right side posteriorly to 16 on the left side anteriorly.
In some colonies (possibly with juvenile zooids) the stigmata are small and oval and rounded papillae are on the transverse vessels (Gladstone QM GH4988). However, this is rare, and papillae were not usually detected.
The oesophagus is relatively long and distally it bends before entering the smooth, oval horizontal stomach, which lies antesior to a borizontal part of the rectum in the ascending limb of the gut loop. The distal end of the loop curves to the left and dorsally and the short neck connecting it to the posterior abdomen is on its dorsal side. The rectum extends anteriorly to halfway up the branchial sac and ends in a 2 -lipped anus.
The sexual posterior abdomina are short, tear-drop-shaped containing male follicles and ovary. These lengthen to comma shaped organs and subsequently to Iong and strap-like vegetative posterior abdomina. The latter are found on vegetative zooids around the actively growing borders of the colony. Comma-shaped posterior abdomina with the V-shaped heart posteriorly and a few male follicles and small ovary in the middle or anteriorly, occur as the zooid changes from its. sexual to vegetative phase.
Two or 3 embryos are found in the unusually large atrial cavity of zooids collected in May in Moreton Bay, August (but not in March) from the Capricotn Group and in June from Lizard I. The embryos are few and small, especially in relation to the thorax and its roomy peribranchial cavity. It is possible that the species compensates for this by a long reproductive period (producing offspring over much of the year), and by having large long-lived colonies with numerous zooids.
The larval trunks are 0,5 to 0.6 mm long. They bave 3 shallow, narrow-stalked adhesive organs anteriorly, alternating with median and lateral ampulla, and a postero-ventral and mid-dorsal clump of ectodermal vesicles. The ampullae have conspicuous caps of enlarged epidermal cells, and similar enlarged ectodermal cells are present in the outer walls of the ectodermal vesicles.

REMARKS

Polyclinum vasculosum Pizon, 1908 from Indonesia was described from a small, single system colony. The zooids in branching double rows radiate from the common cloaca. The zooids have 12 rows of stigmata with up to 15 stigmata per row, and no branchial papillae were detected on the transverse vessels. Specimens from Hawaii, the Philippine and Marianas 1s, some sandy and
others naked, were assigned to this species (Tokioka 1967), but the naked ones (from the Hawaiian Islands) ane the only ones correctly assigned. They have branching double tows of zooids radiating from large cloacal apertures with denticulate borders (like those of P. constellatum: see colonies from St. Helena, Michaelsen 1930), dark pigment (yellowish-brown) in the zooids, and colonies that are extensive sheets up to 2.5 cm thick. The narrow thoraces, dark pigment, long atrial languets and latge cloacal apertures resemble Polyclinum macrophyllum which appears to be a synonym of P. vasculosum. Potyclinum fesfum Van Name, 1918 from the Philippines, which has large investing colonies, is probably also a syonym of P. vasculosum, although the colonies are too mutilated to be sure.

Polyclinum macrophyillum Michaelsen, 1919 from Malagasy, and Western Australia (Michaelsen 1930), with its large muscular atrial lip, narrow thorax, 12 to 14 rows of 10 or 11 stigmata and branchial papillae sometimes on the transverse vessels, cannot be separated from P, vasculosum, especially from colonies from the Hawaiian islands (Tokioka 1967). Michaelsen distinguished Polyclinum macrophyllum phoriax Michaelsen 1930 (from Shark Bay, Western Australia) from the West Indian Ocean P. macrophytLum typicum by jts almost rough (rather than smooth and slippery) upper surface, the tighter insertion of the arrial tongue into the surface layer of test, and more delicate atrial musculature. However, these distinctions fall within the range of variation of the Australian populations and there well may be a continuous distribution around the Indian Ocean. Thus, assuming the synonymy of P. macrophyllum with P. vasculosum Pizon, 1908 is valid, P. vaseulosum has a range from the West Indian Ocean into the Western Pacific to Hawaii (see Tokioka, 1967).
Polyclinum festum Hartmeyer, 1905 from Mauritius has a longe narrow atrial lip and probably does not belong to this species. Although its surface is smooth, sand is present on the base and sides of the colony and sometimes on the surface (ste Millar 1975).

The large (6 mm) investing colonies, Polyclinum festan: Van Name, 1918, from the Philippines, although so mutilated that systems could tot be discemed, probably are synonyms of the present species. Van Name (1945) believed that these specimens, as well as P. festum from the type Incality to be synonyms of P. constellatum which also has its type locality in Mauritius, However, all 3 species appear to be distinct.

Michaelsen (1930) believed that P. constellatum could be distinguished by jts branching double row systems while in P. macrophyllum ($<P$. vasculosum) branching canals formed a network. However, the complicated branching cloacal canals with a row of zooids along each side, that converge to the cloacal apertures, occur in both species. The primary difference between them appears to be the shape of the colony, viz a capitate cushion attached by a small area of the base in P. constellatum, and in the present species an extensive sheet fixed by the whole of the basal surface. Usually the absence of branchial papillae also is indicative of P, vasculosum.

Genus Aplidiopsis Labille, 1890

Type species: Macroclinum vitreum Lahille, 1887

Species of this genus resemble those of Polyclinum, The zooids differ mainly in the absence of branchial papillae, the relatively large and verlical gut loop, and in some species a ventral band of muscles continuing onto the abdomen and posterior abdomert. As in Polyclinum the posterior abdomen is connected to the abdomen by a narrow neck, and the vas deferens takes the characteristic polyclinid course from the left to the right side of the gut loop. As in Polyolinum, Synoicum and Sidreioides the oesophagus curves ventrally to enter the stomach along its dorsal border. A long atrial lip sometimes extends out from the upper rim of the opering as in Synoicum spp. and some Polyclinum spp. (e.g. P. orbitum), In other species the atrial lip arises from the body wall anterior to the opening and closes down over the anteriorly oriented atrial aperture, as in most Polyclinum spp. and some Synoicum spp. Zooids are arranged in circular or stellate systems.
Generally Aplidiopsis zooids are about lem long while those of Pobvtinium anc about 5 mm or less. Other differences between Polyclinum and Aplidiopsis are discussed above (sce Polyclinidae). The relatively large, verlical gut loop and the larger zooids of Aplidiapsis are very often the only reliable characters to distinguish it from Polyclinum. Although the posterior abdomen and testis are longer than in Polyclinum, the gut loop is vertical rather than horizontal, and the charactenstic twist found in Polyclinum does not occur in this genus, a relationship to Polyclinum is indicated by the ocurse of the vas deferens.
Aplidloysisis is not diverse. In addition to the sype species from the Mediterranean, the known
species are A. pannosa (Ritter) from Alaska (see Nishikawa 1990) and the related A. helenae Redikorzev (see Van Name 1945), A. atlantica Monniot, 1974 from the Azotes (at 600 m), A. stellata Monniot and Monniot, 1984 from Guadaloupe, A. pyrijonmis (Herdman, 1886), A. anoyense Tokioka, 1967 from China, A. rokartersis Tokioka, 1954a from the Tokhara Is, A. discoveryiMillar, 1960 from the North I. (New Zealand), and 3 new Australian species (see below). Aplidiopsis pannosa, A. atlantica, A. stellata and A. helenae, A. confluata n.sp., and A. mammillazan.sp., have delicate muscles confined to the anterior part of the thorax, in contrast to the other known species, which have the thoracie longitudinal muscles converging to a ventral band that extends the length of the zooid. Aplidiopsis stellata is known to have a brood pouch at the posterior end of the thorax rather than halfway up as in Polyclinum. The 3 species recorded from Australia are from temperate waters.

Key to species of Aplidiopsis jecorded from Australia

1. Longitudinal muscles extend the lenglh of the zooid; systems circularA. sabulosa n.sp.
Longitudiral muscles do not extend the length of the zooid; systems not circular 2
2. Colony sandy; common cloacal apertures protrude A. mommillatan.sp.

Colony not sandy; common cloacal apertures sessile
A. confluatáa n.sp.

Species recorded from waters adjacent to Australia

Aplidiopsis amoyense Tokioka, 1967 from Hsia-men has stellate systems that resemble those of A. nammillata n.sp. (see below).
Aplidiopsis discoveryi Millar, 1960 from New Zealand, unlike A. sabilosa \quad.sp., lacks sand altogether. The zooids, arranged in circular systems, can be seen through the transparent test.
Aplidiopsis tokaraensis Tokioka, 1954a from the Tokhara is have an external layer of sand obscuring the systems. About 10 longitudinal thoracic muscles converge to form a ventral abdominal band. Monniot (1974) believed this species to be a member of the genus Sidnyum, with 8 branchial lobes. However, its smooth stomach wall shape of the posterior abdomen preclude that view.

Aplidiopsis confluata n.sp.

(Fig. 36)

Distribution

Type Locality: Tasmania (Nincpin Point, 5 m coll. P. Last 19,7.82, holotype QM GH15514).
Further Records: None.

DESCRIPTION

External Appearance: The colony is a soft. almost spherical, naked head, about 2.5 sm in diameter, attached by a short, thick, wrinkled stalk which narrows toward the base, and has some sand adhering to it. Double rows of zooids converge to large, sessile common cloacal apertures which are scattered randomly over the head. The test is soft and translucent internally, though the surface layer is opaque. Zooids are crowded, and cross one another in the centre of the colony and down into the stalk. The test, although it is soft, is tough and the zooids, tightly enclosed in it, are difficult to free from the colony,
Internal Structure: Zooids are at least 1 cm long, of which the thorax is about 2 mm the abdomen about 1 mm , the posterior abdomen occupying most of the zooid length. The branchial aperture has 6 small, pointed lobes. There is a long, flat, strap-like tongue from the body near the anterior edge of the first row of stigmata. The atrial aperture, with a sphincter muscle, is opposite the second row. About 8 fine longitudinal muscles on each side radiate from the branchial aperture and fade out halfway down the thorax. A median dorsal papilla is posterior to the atrial aperture. There are 16 rows of up to 14 stigmata, the ventral ones progressively reduced in length. The gut loop is vertical, although the oesophagus curves ventrally to enter the smooth-walled stomach. The duodenum expands in diameter to its junction with the short proximal part of the midintestine, and an oval posterior stomach is in the descending limb of the gut loop.
The posterior abdomen is particularly long, exlending into the centre of the colony and down into the stalk. It is joined to the left (or ventral) side of the pole of the gut loop by a short narrow neck, but distal to the neck it abruptly increases in diameter and the greater part of the posterior abdomen is of even diameter. Anteriorly gonads are absent from 5 mm or more of its length. They occupy about 2 mm of the middle part of the posterior abdomen. They consist of a small ovary anteriorly, and a long cluster of almost spherical testis follicles. These are of various sizes, randomly distributed in the cluster, and they are not

in regular longitudinal series. The vas defcrens curves around the gut loop onto the other (right or dorsal) side to extend anteriorly to the atrial cavity between the oesophagus and rectum. There are no embryos in this specimen.

REMARKS

The species is unique in jts soft sand-free test, crowded zooids and their long posterior abdomina each with a long bunch of testis follicles about half way down. It resembles the other Australian species Aplidiopsis mammillata n .sp. in its long longitudinal muscles confined to the anterior part of the long, delicate thorax, and the absence of branchial papillae. The long, strap-like atrial tongue is more conspicuous, there are more stigmata per row but fewer rows, and the posterior abdomen is longer than in either of the other 2 Australian speeies assigned to this genus. Aplidiopses discoveryi Millar, 1960, from New Zealand has circular systems and a spindleshaped posterior abdomen distinguishing it from the present species.

Aplidiopsis mammillata n.sp.
(Fig. 37. Platc 7d)

Distribution

Type Locality: South Australia (Cathedral Rock. near Thistle I., Spencer Guif, coll. W.H. Sisse 6.4.87, slide 19, holotype QM GH4168).
Further Records: None.

Description

External Appearance: The holotype is a large cushion 4 cm in diameter and 1 cm thick. The upper surface is depressed and divided into 3 naked areas by raised sandy elevations continuous with the raiscd rim around the margin. There are one or 2 systems in each naked area. Each system has sandy strips extending along radii from the peripheral sandy clevated rim to the central protuberant common cloacal aperture. Three or 4 double rows of zooids extend out between the radial strips of sand. Sand is confincd to the surface test, however, and never is found internally. Zooids are tightly enclosed in the soft test and are difficult to remove.
Internal Structure: The zooids arc large, 7 mm long, the thorax being more than half of the total length. The branchial aperture is small with

FIG. 36: Aplidiopsis confluata n.sp. (holotype QM GH5514) - a, colony; \mathbf{h}, zooid. Scales: a, 2cm; b, 0.5 mm .

6 pointed lobes. The small anteriorly directed atrial aperture is near the anterior end of the zooid.

Fine and inconspicuous longitudinal muscles were detected in the anterior part of each zooid. The atrial lip is long and narrow, arising from the body wall, and is difficult to temove from the test. There are 18 rows of stigmata with about 10 pcr row. The gut loop is vertical and relatively short. The stomach wall is smooth.

A long, almost cylindrical posterior abdomen, with a narrow neck attaching it to the left side of the gut loop, contains crowded male follicles and a small ovary surrounded by the male follicles.

Remarks

Aplidiopsis amoyense Tokioka, 1967 from Hsia-men has stellate systems that resemble those of this new South Australian species. Zooids are also similar, with only very delicate muscles, however the Australian species has a larger branchial sac with about 18 rows of stigmata (the Chinese species having 12), and sand adheres to the external test.

Aplidiopsis pannose is also in this group of species, with delicate muscles, and a smaller gut loop than usual. However. jt lacks the characteristic radiating double row systems of A. amoyense and the present species.

Aplidiopsis sabulosa n.sp.
(Fig. 38. Plate 7e)

Distribution

Type Locality: South Australia (Price l., Avoid Bay $15-20 \mathrm{~m}$, coll: W.H. Sasse 9.4 .87 , holutype QM GH4153).
Furtier Records: None.

DESCRIPTION

External appearance: The holotype is a large cushion 10 cm in diameter up to 3 cm thick and with sand embedded througbout, absent only from the surface around the branchial and common cloacal apertures. The sufface is even, without depressions or ridges. The cushion is fixed by a small area of the flat basal surface. Zooids open onto the rounded borders of the colony as well as its upper surface and much of the basal surface as well. Zonids are arranged in circular systems around sessile conspicuously naked common cloacal apertures about 5 mm apart.

InTERNAL STRUCTURE: Zooids are about 1.3 cm long of which the thorax and abdomen are of equal length and together are about half the total
zooid length. Six strong longitudinal muscles from the branchial aperturc, with some from the intersiphonal space, extend to the postcrior end of the thorax where they join into a single ventral band that extends to the end of the zooid. The atrial lip is a tongue-shaped muscular extension of the upper border of the opening. 1 is forked at the tip, The atrial opening is antcriorly directed.
There are 20 rows of about 6 stigmata. The gut toop is voluminous. The cesophagus curves into the stomach which has a short dorsal border and a long, curved ventral margin. The duodenum is long and there is an oval posterior stomach at the bottom of the descending limb of the loop. The rectum extends to about halfway up the thorax.

FIG. 37: Aplidiopsis nammillata n.sp, (holotype QM GH4168) - a, colony from above; \mathbf{b}, single system with central protuberant cloacal aperture and double rows of zooids converging to it; c, zooid. Scalcs: a, Icm; b, $5 \mathrm{~mm} ; \mathrm{c}, 1 \mathrm{~mm}$.

terminating in a bilabiate anus. The stomach wall has internal circular patehes of glandular epithelium giving a mulberry-like pattern.
The posterior abdomen is long, with a narrow neck anteriorly joining it to the left side of the pole of the gut loop. This neck portion gradually expands to the posterior gonad-bearing half. Male follicles are small and bunched and the large 2 -egg ovary is surrounded by them. At its posterior end, the posterior abdomen tapers to a vascular stolon. The vas deferens curves around the ventral side of the posterior stomach from the left (or ventral) side of the loop and extends along the right side of the curve and inner side of the rectum to open at the level of the anus.
Two or 3 early embryos crowded in a longitudinal series are in the posterior part of the atrial cavity of the holotype (collected in April). Tailed larvae were not present.

Remarks

Aplidiopsis mammillata has about the same number of rows of stigmata as the present species, but slightly more per row. It is also distinguished by its delicate musculature, smaller gut loop, smooth stomach wall, short and cylindrical posterior abdomen and its radial double-row systems.
Aplidiopsis sabulosa has circular systems like A. discoveryi, and A. confluata, and is distinguished by its embedded sand, and small number of stigmata in each row.
Aplidiopsis tokaraensis has sand on the outer surface, but not embedded in the test. The zooids have 18-20 stigmata and 12 rows, clearly distinguishing them from zooids of the present species.

Genus Sidneioides Kesteven, 1909
Type species: Sidneioides tamaramae Kesteven, 1909.

The genus resembles Polyclinum in its short longitudinal muscles, large muscular atrial lip that arises from the body wall anterior to the opening and its smooth-walled and bilaterally symmetrical stomach. It differs in having a relatively large ovary. The position of the ovary at mid-thoracic level, and a relatively large vertical gut loop. A median dorsal papilla projects from

FIG. 38: Aplidiopsis sabulosa n.sp. (holotype QM GH4153) - \mathbf{a}, colony from above; \mathbf{b}, thorax and abdomen with 2 embryos in atrial cavity; c, posterior abdomen. Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, ~ I \mathrm{~mm} ; \mathrm{c}, 2 \mathrm{~mm}$.
the body wall behind the atrial aperture as in many specjes of Polycinum and Synoicum. The vas deferens passes around the ventral side of the descending gut loop to lie on the right side of the rectum as in Polyclinum. The voluminous vertical gut loop, absence of branchial papillae, and long posterior abdomen are more like Aplidiopsis than Polyclinum.
The larvae are small, sometimes smaller than those of Polyclinum. Although they have similar tateral ampullae and ectodermal yesicles, median ampuilae are not present.
Three species of this gepus are known. One is indigenous, with a wide range (from Westemport to Gladstone) on the eastem coast of Australia, The other known species are recorded from Japan (see Tokioka 1953):

Sidreioides japonense Redikorzev, 1913, seconded from Japan and Indonesia (Tokioka 1953, Millar 1975, Nistikawa 1990) forms a flat cushion with irtegular furrows and protruding cloacal apertures on the upper surface. As in S. tamaramae a layer of sand adheres to the surface test, but sand is not present internally. The species are distinguished by their colony shape, and by the longer rows of stigmata and longer larval trunk of S. japonense (see Tokioka 1953).

Sidneioides snamoti (Oka, 1927) is distinguishea by its systems which resemble those of Polyclinum vasculosum, with branching cloacal canals converging to protuberant cloacal apertures. The zooids differ from those of other species in having more rows of stigmata (17 to 19), as well as a large number of perforations in each row (see also Tokioka 1953, Nishikawa 1990).

Sidneioides tamaramae Kesteven, 1909
(Fig. 39. Plate 7f)
Sidineioider ramaramae Kesteven, 1909, p.277, Koit, 1957. p. 104; 1976, p. 63.

Distribution

New Racords: New South Wales (Ulladulla, QM G11859; Twofold Bay, AM Y2151; Mcrewether, MV), Queensland (Gladstone Harbour, QM G98j8),

Previously Recorded: Victoria (Western Port Kott 1976). New South Wales (Tamaramae Bay Kesteven 1909; Merewether - AM Y1318-9 U3831 Kott 1957),

DESCRPPTION

EXTERNaL APPEARANCE: Colonies consist of upright mushroom-shaped lobes widest across their free ends where often they are subdivided into separate shallow lobes, each with a central
protruding cloacal aperture. Branchial openings are inside a ridge around the outer margin of each subdivision. The colony lobes narrow towand the base where they are continuous with the basal common test. The small colonies from Gladstone are separate lobes, without the basal common test (QM G9808). The diameter across the free end of each terminal branch is about 1 cm , and the rounded subdivisions each containing a single circular system, are about 0.3 mm in diameter. The free terminal part of each lobe is nearly 1 cm long, and the overall height of the colony is up to 3 cm . The whole outer surface is covered with a thick layer of sand. Sand is not present internally. Although the test is rather tough, the whole colony is soft, flaccid, and colourless in preservative. The outer free ends of all the lobes are level with one another and crowded together, and the upper surface has a cauliflower-like appearance. The large, muscular atrial lip of each zooid is extended into the central of the colony lobe and is inserted into the test around the cloacal aperture.

Internal Structure: The zooids are about 6 mm long including the posterior abdomen, which is attached to the abdomen by a long, narrow rieck. The thorax is about two-thirds of the length of the abdomen. Six to 10 fine longitudinal muscle bands are on the anterior half of the thotax, The atrial aperture is projected forwards, and the anterior atrial lip, containing longitudinal and fine transverse muscles arises from the body wall anterior to the aperture. Twelve to 14 rows of stigmata, each with about 12 stigmata, are separated from one another by plain-edged transverse vessels each containing a narrow band of muscles.

The voluminous gut loop is vertical and the stomach smooth-walled. The posterior abdomen, joined to the abdomen by a narrow neck, is short, tear-drop-shaped to long and almost cylindrical or elliptical and is packed with male follicles. The relatively large ovary, with up to 18 eggs of various sizes, is in the tharax just on the right side of the anal opening, half way up the thorax. The colony from Gladstone collected in April has up to 8 embryos in the anterior half of the right peribranchial cavity.

The larval trunk is 0.4 mm long (one of the smaller viviparous larvae known in the Ascidiacea). The tail is wound almost the whole way around it. Four lateral ampullae are present each side of the adhesive organs, and there are clumps of postero-ventral ectodermal vesicles each side of the base of the tail, and a row of about 6
ectodermal vesicles along each side of the middorsal line.

Remarks

The colony closely resembles that of Polyclinum orbitum. The shape and consistency of the colonial lobes are the same, and both zooids and larvae are very similar in size in these two species. The larvae of the present species, also resemble those of P. orbitum in the absence of median ampullae. Sidneioides tamaramae can be distinguished by the absence of branchial papillae, the position of the ovary, and the atrial lip, which in P. orbitum extends out from the upper rim of the aperture (as it does in Aplidiopsis, but seldom in other species of Polyclinum). The present species also has fewer rows of stigmata, fewer stigmata
per row, and a larger and more vertical gut loop than P_{+}. orbitum.
The thickness of the basal common test varies, the type specimens having a basal plate (Kesteven 1909) rather than the upright stalk of the newly recorded colonies from Ulladulla (QM G11859).

Genus Synoicum Phipps, 1774
Type species: Synoicum turgens Phipps, 1774.
Zooids are small, and form circular or doublerow systems. Colonies are sessile cushions, or investing sheets, or stalked heads. Despite the small size of the zooids there are 4 to 20 rows of

FIG. 39: Sidneioides tamaramae - a, lobe of a colony (QM G9808); b, portion of a colony (QM G11859); c, zooid with ovary to right of the distal part of the rectum and embryos in alrial cavity (QM G9808); d, larva (AM Y1318). Scales: a, b, Smm; c, 0.Smm; d, 0.1mm.
stigmata and up to 20 stigmata per row. Longitudinal muscles form a wide band along each side of the abdomen and posterior abdomen. Gonads are in the long, narrow posterior abdomen which is continuous with, and not constricted off from, the abdomen. The oesophagus is curved to enter the bilaterally symmetrical stomach a short way along its dorsal border. The stomach wall is smooth or it has circular mulberry-like swellings. Sometimes it is quadrate in section but it never has true longitudinal folds. The gut loop is narrow and vertical, not being twisted or horizontal as in Polyclinum. The male follicles are in longitudinal series (rather than being bunched) with the ovary anterior to them.
The atrial aperture is large, and often produced dorsally on a roomy siphon. The rim of the opening often has minute pointed teeth except anteriorly where it is produced into a lip. Synoicum macroglossum is the only species with the lip separated from the apcrture. The dorso-median papilla on the body wall just behind the atrial aperture, often actually on the atrial siphon itself, occurs in most species, as it does also in Aplidiopsis, Sydneioides and in many Polyclinum spp. It is not a species character as Michaelsen (1930) thought it was.
Embryos usually are incubated in the posterodorsal half of the atrial cavity, sometimes (when large) occupying the whole of the cavity. In a few species (c.g. S. sacculum n.sp.) the embryos are incubated in a brood pouch constrieted off from the postero-dorsal comer of the thorax (rather than half-way up as in Polyclinum).
Larvae have median and lateral ectodermal ampullae, each with columnar ectodermal cells forming a cap over the terminal end like those of Polyclimum. Dorsal and ventral vesicles resemble those of Polyclinum, branching off epidermal strands that trail posteriorly on each side of the mid-dorsal and mid-ventral lines. In other species the vesicles are median rather than lateral and the median stems from which they branch are shorter than the lateral ones of Polyclinum - dorsal as well as ventral vesicles being anterior, just behind the ampullae.
In many species the branchial lobes are relatively shallow and inconspicuous (e.g. S. bowerbanki). In Synoicum papilliferum and S. macroglossum the atrial lips are produced from the body wall anterior to the aperture (as in the majority of Polyclinum). However, in other species of the genus the atrial opening is relatively primitive, with the atrial lip represented by a simple expansion of the the upper rim of the
opening (as in Polyclinum orbitum and Aplidiopsis). Two or 3 lobes are on the tip of the atrial lip and other small lobes are present on the posterior rim of the opening. The condition is reminiscent of the angolanum group of species in Eudistoma (sce Kott 1990) in which rudimentary cloacal systems consist of zooids arranged around shallow rudimentary cloacal cavities that are little more than depressions in the surface test (see Kott 1990). Thus the atrial aperture generally present in Synoicum may be a relict of an early stage in the evolution of cloacal cavities.
The presence or absence of mulberry-like swellings of the stomach wall are reliable species characters. Although these swellings are sometimes inconspicuous in small zooids, Berrill's (1950) view that the stomach is smooth in small zooids but mulberry-like in large ones is not confirmed in the present study. In certain species the stomach is large, falling into horizontal folds. Such a stomach, known from Synoicum concavitum n.sp. and S. atopogaster, resembles the stomach of Morchellium pannosum n.sp. and M. albidum n.sp. It was formerly the characteristic of the genus Atopogaster by which it was separated from Synoicum.
The curved ocsophagus of Synoicum which usually (but not always) enters the stomach along its dorsal border, resembles that of Polyclinum and the Holozoinae rather than the barrel shaped, vertical and more or less radially symmetrical stomach of Diazonidae, Polycitoridae, Ritterella and Aplidium.
Synoicum rubrum (Abbott and Trason, 1968), initially assigned to Ritterella, apparently has closcr affinities with the present genus as, despite its lack of zooid systems, it has a characteristic mulberry-like stomach with the oesophagus entering its dorsal surface.
Synoicum is cosmopolitan, known from both northern and southern hemispheres, especially in polar waters. It is well represented in Australia by indigenous species, of which the majority are temperate, although some are tropical (Table 6). It is most diverse in New Zealand waters (sec Millar 1982).

Key to species of Synoicum recorded from Australia

1. Stigmata in 4 rowsS. bowerbanki

Stigmata in more than 4 rows .2
2. Colony long, narrow, cylindrical stalks with zooids opening onto terminal head .3

Colony not long, narrow, cylindrical stalks with zooids opening onto terminal head
. 5
3. Stigmata in 9 rows; more than one system per lobe; tropical S. buccinumn. sp. Stigmata in more than 9 rows; one system per lobe; temperate .. 4^{4}
4. Stomach wall mulberry like; system stellate S. angustum n.sp. Stomach wall not mulberry-like; system circular.
S. arenaceum
5. Stomach wall mulberry-like 6
Stomach wall not multerry-like 8
6. Colony separate flat-lopped lobes on sandy base S. sacculumn. sp. Colony not separate flat-lopped lobes on sandy base .. 7
7. Colony a flat irregular sheet: surface raised into dome-like swellings over each system S. intercedens Colnny not a flat iregular sheet; surface not raised into dome-like swellings over each sysIcm. S erectumn. sp.
8. Atrial lip separate from aperture 9

Atrial lip not separate from aperture ..t...... 10
9. Sand in layer externally; temperate
S. papilliferum

Sand not in layer externally, tropical \qquad
10. Parasligmatic vessels present . S. atopozaster Parastignatic vessels not present 11
11. Zooids amanged in eonspicuous longitudinal double row systems S. longistriatum n.sp. Zooids not amanged in conspicuous longitudinal double row systems 12
13. Cloatal cavilies beneath decp depressions in surface 13 Cloncal cavities not beneath deep depressions in surface....... .. 16
13. Cloacal canals sarround elevated zooid-lice arcas \qquad S. chrysanthemum n.sp. Cloacal canals do not surround elevated zooidfrec areas 14
14. Conspicuous elevated ridges arsund depressions in surface \qquad S. castellatum n.sp. Conspicuous clevated ridges not present around depressions in surface 15
15. Stigmata up to 18 per row
. S. concavitum ก.sp.
Stigmata up to 12 per row \qquad S. tropicum
16. Colony of numerous lobes on sandy base 17
Colony not numerous lobes on sandy base 19
17. Culony lobes sandy 18
Colony lobes naked S. starenum n.sp.
18. Systems more than one per lobe
..S. durum n.s卫,
Systems one per lobe S. obscurum n.sp.
19. Colony, flat-inpped S. galein.sp.
Colony not flat-lopped 20
20. Thorax long and narrow, about 16 rows of sligmata S. prumum
Therax not long and narrow, about 8 rows ofshgmatia
\qquad S. citrumn.sp.

Species recorded from waters adjacent to Australia

Sywoicum apectetum Millar, 1982, from the northern tip of the North 1. of New Zealand, has colonies resembling those of S. buccinum n. Sp. However the New Zealand species has only one or 2 systems per colony lohe, and its atrial lip is separate from the aperture, as in 3 popilliferum.
Synoicum haurakiensis Brewin, 1951 from the Hauraki Gulf, has a mulherry-like stomach, and the atriat lip apparently from the upper rim of the aperture. The colony is stalked and the systems are circular. The species is distinguished Irom S. sacculum n. sp, by its stalled colony:
Synoicum herdmani Brewin, 1956 from Chatham 1.. New Zealand las stalked lobes with eireular systems. Zonids have a smooth stomach. The atrial lip appears to be independent of the aperture. The flat-sopped colony may be distinctive (see below, S. arenaceum).
Synoicum laypurgon Michaclsen, 1924 from Haurakı Gull, New Zxaland, is not conspecific with the specimens from Fremantle which Michaelsen (1930) assigned to S bypurgon as forma galei. The New Zealand colonies are club- or pear-shaped, with obseure systems. laecal pellets in the test, naked upper surface and sandy base, smooth stomach wall, atrial lip from the upper rim of the opening and a brood pouch constricted off from the hody wall like S. sarculum n. sp. It resembles the tropical Australian S. sworemum ni. sp., although the latter lacks a brood pouch, and has adorsal papilla.
Synoicum Kuranui Brewin, 1950b, from Great Barrier 1., New Zealand, has flat-topped, sandy lobes up to 3.5 cm light, reducing in diameter toward the base. The zooids, in round or oval systems, have mulberylike stomachs. It is distinguished from S. saccultom n. sp. Iy the shape of the colonies, with their narrow sandy basal stalks Kolf (1963) assigned specimens
TABLE 6. Summary of characters of species of Synocium recorded from Australia

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Species \& Biogeographical Range \({ }^{1}\) \& Range anticlockwise around Australia \& Colony \& Systems \& 5 tigmata: no. rows; no. row \& \[
\begin{aligned}
\& \text { Atrial } \\
\& \text { lip }^{2}
\end{aligned}
\] \& Dorsal papilla \({ }^{3}\) \& Stomach wall \({ }^{4}\) \& Embryos: number:larval trunk median length (mm) \& Other \\
\hline S. bowerbanki \& A.te \& Fremantle Vic. \& sessile, upright with or without sand \& circular \& 4;15 \& R \& N \& S \& 5;0.75 \& small branchial lobes \\
\hline S. buccinum n.sp. \& A,tr \& Capricom Gp Coral Sea \& long sandy stalks \& * \& 9;20 \& " \& " \& " \& 2;0.65 \& barrel-shaped stomach \\
\hline S. arenaccum \& Tasman Sea, te \& \[
\begin{aligned}
\& \text { Victoria - New } \\
\& \text { Zealand }
\end{aligned}
\] \& \(\cdots\) \& circular one/lobe \& >13,? \& " \& " \& " \& ? \& \\
\hline S. chrysanthemum n.sp. \& A,tr \& WA \& stalked heads, with sand \& canals circular \& 10;10 \& S \& " \& " \& ? \& \\
\hline S. papilliferum \& A.re \& Bunbury - Vic. \& \& 7 \& 16-17; 9-10 \& " \& P \& " \& \(?\) \& \\
\hline S. macroglossum \& A.tr \& Heron I. - NW Aust. \& " \& circular \& 18;12-14 \& " \& \& " \& ? \& \\
\hline S. intercedens \& W'P,tr \& Capricom Gp \& * \& " \& 14-17: 12-14 \& R \& " \& \(\stackrel{\text { M }}{ }\) \& \(2 ;\) \& \\
\hline S. angurstum n.sp. \& A.te \& Bass 5 t \& "* \& canals converging to terminal apertures; onellobe \& 14,20 \& " \& " \& \& ?: ? \& \\
\hline S. erectum n.sp. \& A.te \& SA - Vic. \& upright, sand externally \& circular \& 12;8 \& " \& " \& " \& 2:0.70 \& stomach areolations internal \\
\hline S. sacculum n .sp. \& A.te \& SA - Tas \& flat-topped lobes naked; sandy base \& " \& 10;8 \& " \& " \& " \& \(3 ; 0.4\)
5.06 \& brood pouch \\
\hline S. obscurum n.sp. \& A.te \& Vic. to NSW \& shor, sandy lobes \& circular onelobe \& 20;20 \& " \& \(\cdots\) \& 1 \& 5;0.6 \& \\
\hline S. suarenum n.sp. \& A,tr \& Capricorn Gp \& flat-topped lobes naked; sandy base \& circular \& 16:10 \& " \& * \& S \& 3;0.6 \& \\
\hline S. durum n.sp. \& A.tr \& Heron I. \& shor, sandy lobes \& " \& 10:15 \& " \& " \& " \& 2:0.45 \& \\
\hline S. longistriatum n.sp. \& A.te \& Cockbura Sd \& upright, sandy
.. \& canals converging to terminal apertures \& \(16: 16\)
17.10 \& \begin{tabular}{l}
R \\
\\
\hline
\end{tabular} \& N \& 5 \& ? ?

1: 1.3 \&

\hline | S atopogaster |
| :--- |
| S. tropicum | \& \[

$$
\begin{aligned}
& \text { A,te } \\
& \text { WP,tr }
\end{aligned}
$$

\] \& NW Aus. \& massive, naked \& | circular |
| :--- |
| circular; |
| depressed into surface | \& \[

12 ; 8-10
\] \& " \& \& \& ? \&

\hline S. concavitum n.sp. \& A.te \& WA \& " \& " \& 15:18 \& " \& " \& " \& $?$ \&

\hline S. castellotum \& A,tr \& NE Aust. \& " \& " \& 22;30 \& " \& * \& 1 \& 3; 1.3 \& protuberant common cloacal aperture

\hline S. prumum \& A.ce \& NSW - Qld \& " \& circular, not depressed into surface \& 15:8 \& " \& p \& " \& 2;0.56 \&

\hline S. gaiei n.sp. \& A,te \& Fremantle \& extensive sheets naked on upper surface \& " \& $?$ \& " \& N \& * \& 2;? \& brood pouch

\hline S. citrum n.sp. \& A.te \& SA - Tas \& naked cushions \& " \& 8; 20 \& " \& " \& " \& ? \&

\hline
\end{tabular}

[^4]from Heron I. to this species, but re-examination has shown them not to be conspecific (see Syoicum durum $\mathrm{n} . \mathrm{sp}$.). Other colonies assigned to this species from Fiji (Kott 1981) and Indonesia (S ?' clavatum: Millar. 1975) appear to be colonies of S. suarenum n. sp.

Other species from the South I. of New Zcaland (see Millar 1982) not likely to occur in Australia, are S. stewarrense (Michaelsen, 1924), S. pererratum (Sluiter, 1912), S. otagoensis Millar, 1982 and S. occidentalis Millar, 1082.

Synoicum angustım n.sp

(Fig. 40a,b)

Distribution

Type Locality: Tosmania (45 naulical mis NNE of East Sister Is, $39^{\circ} 00^{\circ} \mathrm{S} 148^{\circ} 25^{\circ} \mathrm{E}, 92 \mathrm{~m}$ sandy bottom, epibenthic seed CSIKO Socla Statn 22, coll. W. Zeidler 14.10.84, hololype SAM E2570, paralypes SAM E2572 E2573.
Further Rfcords: None.

DESCRIPTION

External Applarance: Colonies are almost spherical heads (about 1 cm diameter) on the terminal free ends of narrow branching sandy staiks about 6 cm long and 0.5 cm diameter. Zooids are in double rows along the sides of the head converging to a terminat, sessile common cloacal aperture. Sand adheres to the head to form a light covering but a thick coat of sand is crowded on the stalk. Sand is not embedded internally.

In preservative the zooids are reddish, and these. showing through the translucent test and the light covering of sand, make the head appear as brownish-red. The colour of the living colony is not known.

InTERNAL STRUCTURE: Zooids are robust when contracted, but only about 4 mm long, the thorax and abdomen of equal length and together about half the length of the zooid. When extended it is probable that they are thread-like and extend down into the stalk. The rim of the branchial aperture is divided intn 6 rounded lobes, and the atrial aperture has a moderately long, pointed, fleshy lip from the upper border of the opening. A median dorsal papilla behind the lower rim of the atrial aperture is a flat tonguc-like projection or flap bent antcriorly or posteriorly against the zooid. Ten longitudinal muscles are on the thorax and extend down the rest of the zooids as a ventral band. About 14 rows of stigmata have 20 or more
stigmata per fow. These could not be counted accurately owing to the contracted thorax. The oesophagus and post-pyloric part of the gut loop are long. The stomach has rounded swellings in its wall to give a mulberry-like appearance.
The posterior abdomen has a modcratcly long sometimes branched erminal vascular appendix. Neither mature gonads nor embryos are present in this type material.

FIG. 40: Synoicum angustum n.sp. - a, colony (paralype SAM E2572); b, zooid (holotype SAM E2570). Synoicum arenaceum - c, colony (MV F58686). Scales: a, 5 mm, b. 1 mm ; c. 1 cm .

Abstract

Remarks This species has the same mulberry-like stomach and the same temperate ranges as S, sacculum n.sp., from which it is distinguished by the long, narrow branching stalks of its small but distinctive colonies and its long posterior abdomen. The colonies of other stalked species of this genus, viz. the tropical S. buccinum n.sp., and the tentperate S. arenaceum are distinguished by their circular (rather than radiating double-row) systems and smooth stomach walls. Synoicum erectum n.sp. also has a mulberry-like stomach and naked beads on a sandy base. However a number of circular systems opening on the upper surface of S. erectum and narrower thoraces with only about 8 stigmata per row distinguishes it from the present species. The flap-like dorsal papilla is also unique, distinguishing S. angustum from all others is this genus.

Synoicum arenaceum (Michaclsen, 1924) (Fig. 40c)

Macroclinum arenaceum Michaclsen, 1924, p.406, Synoicwnarenaceum: Millar, 1960, p. 361; 1982,p.21.

DISTRIBUTION

NEWRECORD: Victoria (off Cape Howe, MV F58686). Previously Recorded: ? Victoria (Port Phillip Bay - Millar 1960), New Zealand, Stewart I. (Michaelsen 1924). The new record is from 274 m .

DESCRIPTION

External Appearance: 'The newly recorded specimen is a narrow, cylindrical branching stalk, branching (wice, and about 6 cm long overall. The terminal branches are about 4 mm diameter. Each branch occupies about one third of the total length. The tip of each terminal branch is naked, about the same diameter as the fest of the stalk. with a central sessile cloacal aperture around which the zooids appear to be arranged. The remainder of the colony is covered with sand, and also sand is embedded internally.
internal Structure: The zooids in this specimen are muscular and very contracted and few details of their morphology can be determined. The atrial lip is produced from the rim of the atrial aperture. There are at least 13 rows of stigmata. The large smooth-walled stomach is hallway down the abdomen. Gonads are not mature,

Remarks

The identification of this specimen is based on
the form of the colony. However the free end of the head is expanded and flat in the type specimen, but not in the present specimen. Millar (1966) did not describe the specimen he recorded from Port Phillip Bay. Kott (1969) thought this species to be synonymous with the sub-antarctic A. recumbens; and Millar (1982) referred to proposals that S. arenaceum, S. herdmani and S. kuranui are conspecific. Generally the relationships of these species are unresolved, although $\$$. kuramui unlike the others has a mulberry-like stomach, and appears to be different. Further, colonies of the present species have long cylindrical branching stalks different from the tapering ones of S. kuranui. At this stage the New Zealand populations require review, and more Australian material is needed to establish the status of this species and its populations on both sides of the Tasman Sea.

Synoicum atopogaster Kott, 1963

(Fig. 41)
Synoicam atopogaster Kott, 1963, p.89.

DISTRIBUTION

New Records: None.
Previously Recorded: Western Australia (W of the Abrolhos - AM U3927 holotype Kolt 1963).

DESCRIPTION

External Appearance: The colony is a thick, cylindrical upright lobe, 5 cm high and 2.5 cm in diameter. A few smaller lobes are present around the base. The test of the lower half of the colony is firm, while that of the upper half is soft. A crowded layer of sand adheres to the surface test of the lower half, and some is on the upper surface between bare patches.
Zooids extend out to occupy the whole length of the colony, but when contracted they are found either near the top, or withdrawn down into the base, They are arranged in 4 or 5 systems opening around the upper surface. Each common cloacal aperture appears to be surrounded by a cincle of zooids, with their branchial apertures protected by a ridge of surface test.
The holotype colony is wrinkled transversely and its head is displaced laterally.

Internal Structure: The zooids are large, the thorax and abdomen of contracted zooids being at least 4 mm long. They have about 30 longitudinal muscle bands on the thorax and these continue as a wide band along the ventral surface of the abdomen and posterior abdomen. When
contracted, this muscle band draws up the postefior abdomen alongside the abdomen. The branchial aperture is on a short, narrow siphon with the rim divided into 6 lobes. The 2 ventral lobes are slightly enlarged and dorsally-directed. The atrial aperture has a fleshy lip from the anterior rim and a few irregular lobes on the posterior nim.

Each of the 17 rows of up to 10 stigmata is crossed by a parastigmatic vessel, and both primary transverse and parastigmatic vessels have a dorsal languet. Transverse vessel contain muscle fibres. The oesophagus is long, the stomach voIuminous, collapsed into transverse folds. The duodenum and mid-intestine are relatively long and narrow and the oval posterior stomach large.

The gonads consist of a clump of male follicles about halfway down the posterior abdomen, with
a small ovary anterior to them, The vasaefferentia join to form the vas deferens about halfway up the side of the male follicles, rather than each follicle separately joining the vas deferens as it passes up the length of the posterior abdomen.

A single embryo is present in the alrial cavity of zooids of the holotype colony. The larval trunk is 1.3 mm long. A median ampulla with 2 or 3 branches is in each interspace between the modian adhesive organs. Minute epidermal vesicles branch off the epidermis and lie in the thin layer of test that surrounds the large trunk. The yolk mass is large, the developing adult organs are crowded into the posterior end of the trunk.

REMARKS

The zooids of this species are, in some respects.

FIG. 41: Synoicum atopogaster (holotype AM U3927) - a, colony; b, zowid: e, cositracted posterior abdomen; d, larva. The epidermal vesicles in the test around the sides of the larval trank are not shown. Scales: a, lem; b, c, $1 \mathrm{~mm} ; \mathrm{d}, 0.2 \mathrm{~mm}$.
like those of S. concavitum n.sp., having a similar large stomach, a strong ventral muscle, and conspicuous transversc muscles in the branchial sac. However, S. concavitum n.sp., has a flat rather than upright colony with more numerous, but smaller systems in firm, naked, gelatinous test.

The relationship of the species to Morchellium pannosum $\mathrm{n} . \mathrm{sp}$. is discussed below. The course of the vas deferens resembles that of Pseudodistoma candens n.sp., but a phylogenetic relationship between these taxa is not implied.

Synoicum bowerbanki Millar, 1963
(Fig. 42. Plate 8a)
Synoicum bowerbanki Millar, 1963, p. 697.

DISTRIBUTION

New Records: Victoria (Portland, QM GH38, SAM E2551, MV F59372).
Previously Recorded: Western Australia (Fremantle - Millar 1963). Millar (1963) records a further specimen from an unknown Australian loeality.

DESCRIPTION

External Appearance: Colonies are upright and club-shaped (to 6 cm high) to alnost spherical (to 5 cm in diameter). A short stalk from the under surface reduces in diameter toward the substrate, although in some specimens it is divided into branched roots. Several of the newly recorded specimens (SAM E2551, QM GH38) have a single layer of sand grains attached to the surface test, interrupted over the zooid openings. Several upright, club-shaped colonies (MV F59372), however, are naked with basal sandy roots. Sand is not present internally.

Zooids are arranged in evenly spaced circular cloacal systems of about 6 zooids around a central cloacal aperture. Each system is about 5 mm in diameter.
The red test of living colonics becomes transparent and pink in preservative, although this is obscured by the surface layer of dark grey sand grains. The naked colonies are opaque purple on the surface, but transparent internally. The test is gelatinous and firm, but soft.

Internal Structure: Zooids are long (to $1 \mathrm{~cm})$ and thread-like. When contracted, the thorax and abdomen together are about one third of the total length. The terminal branchial aperture is almost smooth-rimmed, the 6 branchial lobes being almost completely suppressed. The atrial aperture is on a relatively long siphon, with its anterior border produced into a lip with its tip
divided into 3 rounded lobes which are inserted into the rim of the cloacal aperture. Apart from the sphincter muscles around the apertures, thoracic musculature is limited to about 14 fine longitudinal and oblique muscles. These extend in a band along each side of the abdomen and posterior abdomen. There are 4 rows of stigmata with up to 15 per row. The oesophagus is curved, the stomach wall is smooth. The duodenal part of the gut is long and the mid-intestine is expanded before opening into an oval posterior stomach in the bend of the gut loop. The anal opening is about one-third of the way up the thorax.
A group of 3 or 4 oocytes are posterior to a gonad-free part of the posterior abdomen behind the gut loop. Behind the ovary are testis follicles in a single longitudinal series sometimes occupying most of the length of the posterior abdomen. The testis follicles are spent in the colonies with embryos being incubated. The species may be protandrous.

Zooids of colonies collected in July (QM GH38) have up to 5 embryos at a time in the atrial cavity. They are at different stages of development, and perhaps were fertilised in the oviduct. Larvae have a trunk 0.7 mm long. Small adhesive organs on slender stalks alternate with conical median ampullae. There also are 4 rounded lateral ampullae on each side. Ampullary vesicles develop on a posteriorly projccting median stalk both ventrally and dorsally. The larval tail reaches to the anterior end of the trunk.

REMARKS

The holotype of this species from Fremantle (Millar 1963) and the specimens Millar described at the same time, from an unknown locality, are fleshy naked masses, up to 9 cm in maximum extent, and 3 cm thick. Most of the newly recorded specimens have a single layer of sand adhering to the surface test, although some club-shaped ones from Portland (MV F59372) are naked, but with sandy basal root-like projections of the test. However, all known specimens have an almost smooth branchial apcrture, a conspicuous atrial siphon with a tridentate tip on the anterior lip, smooth stomach wall, a single row of male follicles, 4 rows of up to 15 stigmata, and a similar larva. Although the cloacal systems of the type specimens are not described, the unusual almost smooth branchial apertures together with the reduced branchial sac support the view that the newly recorded material from south-eastern Australia (in which there is some variability in shape and in the presence of a surface layer of sand) is
conspecific with the type specimens (Millar 1963).

The oesophagus of Synoicum spp. is characteristically longer than in most other genera of the Polyclinidae, and its curve is also characteristic of the genus. However, the oesophagus of the type specimen of S. bowerbanki figured by Millar (1963, p.697) is unusually long in relation to the total length of the gut loop, the stomach being in the posterior third of the abdomen rather than half way down it as is more usual.

Synoicum buccinum n. sp.

(Fig. 43. Plate 8b)

DISTRIBUTION

Type Locality: Coral Sea (Marion Reef, cave, 8 m ,

coll. N. Coleman 24.8.77 AMP1 209, holotype QM GH5045). Queensland (Heron 1., rubble zone, sandy substrate, coll. P. Kott 26.2.84, paratypes QM GH5046; W. reef crest, W. Wistari Reef, coll. P. Kott 12.9.84, paratypes QM GH5047; NW corner Wistari Reef, coll. P. Kott 3.11.86, paratypes QM GH5048).
Further Records: Qucensland (Capricorn Group, QM GH5049-52 GH5585).

DESCRIPTION

External Appearance: Colonies are slender, sandy, cylindrical, irregularly bent, branching stalks. The terminal branches are about 1 cm long and 3 mm in diameter expanding toward the free end into a rounded to flat-topped or flattened mushroom-like naked head up to 1.5 cm in diameter onto which the zooids open. Each terminal

FIG. 42: Synoicum bowerbanki - a, b, outline of colonies (MV F59372, QM GH38); c-e, parts of zooids (QM GH38); f, larva (QM GH38). Scales: a, b, $1 \mathbf{c m} ; \mathbf{c}-\mathbf{e}, 0.5 \mathrm{~mm} ; \mathbf{f}, 0.2 \mathrm{~mm}$.

FIG. 43: Synoicum buccinum n.sp.-a, b, colonies (a, detail of systems, paratype QM GH5048; b, oulline of holotype QM GH5045); c, thorax and abdomen (QM GH5299); d, larva (paratype QM GH5047). Seales: a, $2 \mathrm{~mm} ; \mathrm{b}, 1 \mathrm{~cm} ; \mathrm{c}, 0.5 \mathrm{~mm} ; \mathrm{d}, 0.2 \mathrm{~mm}$.
stalk contains from one to 5 or 6 circular to long systems of 6 or more zooids around large, sessile common cloacal apertures. The systems often are separated from one another by deep furrows in the surface test,

Sand is on the external surface of, and embedded through, the stalk, making it hard, but not brittle. The sand sometimes projects up into the centre of the head and forms partitions around the systems. It is always absent from around the zooids in the soft, upper layer of translucent test, through which the zooids can be seen perpendicuJar to the terminal surface. Sometimes green algal cells are embedded in the surface test together with a scattering of sand particles.

In life the head is 'orange buff or 'orange rufus' with zooids "orange chrome (Ridgeway 1886), but the sandy stalk has no colour and usually is embedded in the substrate.

INTERNAL STRUCTURE: Zooids are moderately small, the thorax and abdomen together being about 2 mm long. The posterior abdomen is very long, projecting down into the stalk. Ore or 2 stolonic yessels are at the posterior end of the posterior abdomen. About 6 fine longitudinal muscle bands extend the whole length of the zooid. The atrial apertures are wide and sessile, with a frilled margin. Muscles are present around the sides and posterior rim of the aperture, and the outside ones loop back across the postero-dorsal surface of the body. The atrial aperture can probably be closed by contraction of the muscles around it, but in most of the zooids examined the dorsal border of the zooid is contracted and concave, partially occluding the aperture. The antefior rim of the atrial aperture is produced into one to 3 long, pointed lips. Nine rows of stigmata are in the pharynx, with 16 per row posteriorly, and 20 per row anteriorly. The gut loop is vertical, and the pesophagus relatively straight. The smoothwalled stomach is quadrate in section and sometimes appears to have 4 folds. These are not true folds. The duodenal area is moderately long, and a posterior stomach is in the bend of the gut loop.

Two rows of male follicles are in the posterior half of the posterior abdomen of the holotype and a small ovary is anterior to the male follicles. A single embryo is in the atrial cavity of this specimen lot (collected in August), Two embryos, one an advanced tailed larva, are present in specimens collected in September. Larvae have an almost spherical trunk about 0.65 mm long with the tail wound about three quarters of the way around it. There are median and lateral ampullae, but epi-
dermal vesicles were not detected in the larval test. Both otolith and ocellus are present.

REMARKS

The straight oesophagus and more or less bar-rel-shaped stomach of this species approach the condition found in Aplidium spp. However, stomach folds, when they occasionally are found, do not appear to be structural and the stomach generally is smooth, justifying its position as a species of Synoicum.
The colonies resemble those of S. arenaceum Michaelsen, 1924 and S, apectetum Millar, 1982, from temperate New Zealand waters. The species is distinguished from both by the numerous systems in each head, and further distinguished from Millar's species by the origin of the alrial lip from the rim of the aperture (rather than separately from the body wall anterior to the opening), and by the length of the larval trunk (only 0.5 mm in Millar's species). Synoicum arenaceum is also distinguished by its more numerous row's of stigmata.

Synoicum castellatum n.sp. (Fig. 44. Plate 8c-e)

Distribution

TyTE Locality; Queensland (Heron I, North Poind. 5 m , coll. D. Parry 4.11.86, holotype QMGH5160.coll. R. Day 4.7.73, paratypes QM GH5163).

Further Records: Western Australia (Exmouth Golf, QM GH5401), Queensland (Capricom Group, QM GH5161-2 GH5164-5 GH5512 GH5587 GH5590; Swain Reefs, AMRoche ZQ326; Broudhurst Reef, QM GH5351 GH5503; Whitsunday Is, QM GH5508; Hook and Hardy Reefs Chapnel QM GH5376 GH5509; Lizard L., QM GH5332; Raine 1., QM GH5627). Northem Territory (Guli of Carpentaria, AMY1062),

Description

EXTERNA1 APPEARANCE: The colonits are mbust, usually massive cushions to 10 cm diameter and about 2 cm high. The upper surface has raised mounded ridges that surround more or less circular to irregularly shaped, or stellate depressions. A conical cloacal aperture protrudes from the centre of each depression rising above the level of the rounded ridges. The branchial apertures are around each depression at the base of the raised nidges. A shallow but extensive cloacal cavity surrounded by the zooids is beneath each depressed area. The test is translucent, firm and gelatipous. In life colonies are "fleshy" coloured.
with 'isabella' colour (Ridgeway 1886) in the centre of the ridges. In preservative the ficsh colour becomes beige, some darker grey along the nidges and in the margins of the colony, and minute dark pigment cells in the test.
The zooids are in rigid compartments in the firm test. They are large and not crowded. Neither embedded nor adherent sand is present.
Internal Structure: Zooids are large and robust, the thorax and abdomen together about 1 cm , even in contracted zooids. The posterior abdomen is at least twice that length. Each branchial aperture has 6 large triangular lobes and a strong sphincter muscle behind the branchial lobes. The atrial tongue is fleshy, sometimes long and pointed, sometimes contracted and blunt and occasionally divided into 2 lobes. Five small pointed papillae are evenly spaced around the rim of the atrial aperture posterior to the atrial tongue, which extends out from the anterior rim of the opening. About 30 longitudinal muscles are in the parietal wall of the thorax, and these continue along the length of the zooid. Transverse muscles are in the transverse vessels of the branchial sac: Short stumpy connecting branches from the muscles in each transverse vessel cross the atrial cavity in connecting vessels about one third of the distance from the dorsal mid-line. These museles break into terminal branches which join with the eighth to tenth Iongitudinal muscles on each side of the pharynx. The connecting vessels with the ir contained muscles effectively divide the atrial cavity into a dorsal chamber (containing faeces and embryos) and a ventral chamber on each side of the pharyinx.
The branchial sac is long and wide with 18 to 22 rows of stigniata. In the centre of the sac about 30 stigmata are in cach mow but the rows dramatically reduce in length posteriorly.
The stomach is large, and its shape sometimes is obscured by horizontal folds when contracted. The stomach wall is smooth externally in the relaxed zooid, but with some variability in its internal lining. Occasionally vertical divisions separate the glandular lining into 4 to 8 ribbonlike bands. In other specimens these bands become irregular patches of glandular epithelium interrupted by branching intemal ridges which may be parallel to one another loward the posterior end of the stomach. The remainder of the descending limb of the gut loop has the usual duodenum, proximal part of the mid-intestine, small posterior stomach, and the distal part of the mid-intestine which opens into the rectum at the base of the ascending limb of the gut loop. The
anus is trumpet-shaped and circular. It is not divided into 2 lips. A few relatively large oocytes are anterior to 2 irregular, crowded series of more or less club-shaped testis follicles, in the posterior half of the long, cylindrical posterior abdomen.

One to 3 large embryos are being ineubated in the dorsal peribranchial cavity of zooids collected at Heron I. in June and July, but not in August, September or November. Larvae have a trunk 1.0 mm long, with the tail wound three-quarters of the distance around it. Median ampullae alternate with the 3 narrow-stalked, shallow adhesive or-
gans. Bands of crowded epidermal vesicles are crowded across the dorsal and ventral mid-lines behind the adhesive organs and extend anteriorly along each side of the mid-line.

Remarks

These large, robust, naked colonies with their zooid systems opening into large depressed areas separated by high rounded ridges of naked test, superficially resemble both Lissoclinum patella (Didemnidae: see Kott 1980) and Aplidium crateriferum (see below). The large, protuberant

FIG. 44: Synoicum castellaum n.sp. - a, colony (holoytpe QM GH5160); b, zooid (QM GH5164); c, larva (QM GH5163). Scales: a, $2 \mathrm{~cm} ; \mathbf{b}, 1 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.
common cloacal apertures of the latter also resemble those of the present species. In addition to the differcnces in its stomach wall, A. crateriferum systems open into depressions that are long, slightly curved with excentric cloacal apertures rather than the more circular to stellate depressions with central common cloacal that occur in the present species. Aplidium crateriferum also has a differently shaped zooid from that of the present species, with the atrial lip separated from the aperture and a narrow thorax with only 8 (rather than the present 30 stigmata).
Aplidium clivosum n.sp. has a similar robust colony, but the zooids are in double rows along cloacal canals that converge to the common cloacal apertures.

Synoicum chrysanthemum n. sp.

 (Fig. 45)
DISTRIBUTION

Type Locality: Western Australia (NW Bluff Point $27^{\circ} 40^{\circ} \mathrm{S} 113^{\circ} 03^{\circ} \mathrm{E}, 130 \mathrm{~m}$, CSIRO 22.8.63, holotype WAM I031.83, paratype 21.8.63 WAM 1032.83; 80 km W of Dongara 64 m , MV Sprightly 19.2.76, paratype WAM 850.83 QM GH2 115).
Further Records: None.

DESCRIPTION

External Appearance: The colonies are mushroon-like consisting of a spherical to conical head to 5 cm in diameter, on a thick, cylindrical stalk 3 to 4 cm long and 1 cm in diameter. Basally the stalk divides into 2 or 3 short thick roots.
The preserved colonies are opaque and white. Sand is crowded in the surface layer of test. but becomes less so internally, The surface of the head is covered with circular zooid-frec arcas (about 5 mm in diameter) which swell out from the surface a little. These are surrounded by cloacal canals which lie beneath depressions or creases in the surface test. The layer of test over the cloacal canals is thin but opaque with sand embedded. Common cloacal cavities are where several of the circular canals meet beneath a large common cloacal aperturc. Cloacal canals are rigid with sand and in the examined colonics the branchial sacs arc exposed directly to them through the large atrial apertures.

Internal Structure: The thorax and abdomen together are about 3 mm long, with the thorax longer than the abdomen. The posterior abdomen

FlG. 45: Synoicum chrysanthemum n.sp. (paratype QM GH2IIS) - a. colony; b, relaxed zooid with wide open atrial apenture. Scales: a, $2 \mathrm{~cm} ; \boldsymbol{b}, 0.5 \mathrm{~mm}$.

is particularly long, extending into the centre of the head and down into the stalk.

One to 3 shallow to pointed, fleshy atrial lips are produced from the body wall just anterior to the atrial sphineters. The atrial aperture is open for about the middle two-thirds of the length of the thorax. No dorsal papilla was scen, although its presence could have been obscured by the wide open atrial aperture. About 10 rows of 10 long narrow stigmata are in the branchial sac. The stomach is smooth, and quadrate in section. Gonads were not observed in the examined material.

REMARLS

The organisation of the cloacal systems, with zooids in double rows, one row along each side of the narrow canals that surround the raised circular areas on the surface, resembles some Aplidium species (e.g. A. tabascum n.sp, A. ccllis Monniot, 1987) from the tropical western Pacific. The present species is stalked, unlike the sessile sheets of these Aplidium spp. It is further distinguished by the sand which is crowded throughout the test.

Synoicum cilrum n, sp.
(Fig. 46. Plate 8f)

Distribution

Type Locality: Victoria (Wilson"s Promontory, Waterloo Bay, 25 m vertical face, coll. J.E. Watson 26.1.78, holotype QM GH 5104). Tasmania (Satellite I. off Bruny I., d'Entrccasteaux Channel, 6 m vertical face, coll. J.E. Wiatson 18.2.72, paratype MV F59369). Further Records: South Australia (Port MacDon. nell, QM5104 GH2294). Tasmania (Satellite I, off Bruny I., MV F59366).

DESCRIPTION

EXTERNAL APPEARANCE: Colonies are rounded, cushion-shaped, sessile and fixed by a small part of the hasal surface. The test is gelatinous and translucent. The zooids open onto the upper surface. The known colonics are squashed, often mutilated. Zooids are crowded. They may be arranged in circular systems but these are obseurc. The colonies are up to 2 cm high and up to 3 cm in maximum dimension. Zooids are said to have been bright yellow in a yellow matrix when alive.

Internal Structure: Contracted zooids are nearly 5 mm long, the fleshy thorax and abdomen together being about half of the total length. The thorax is especially large, with 12 to 20 longitudinal musele bands that extend the length of the
zooids. Conspicuous sphincters are present around the base of the branchial siphon. The branchial lobes are relatively low and rounded. The atrial lip, continuous with the anterior rim of the aperture, is fleshy and usually bilabiate, with cach lobe long and pointed.

Seven or 8 rows of about 20 stigmata are in the branchial sac. The stomach is large almost spherical and smooth walled. Long double rows of male follicles are in the relatively short posterior abdomen.

FIG. 46: Synoicum cirrum n.sp. (hototype QM GH5014) - a, colony; b, zooid. Scales: a, 1cm; b, 0.5 mm .
sile, cushion-shaped, translucent, greenish-yellow colony, which lacks sand either on the outside or embedded in the test. Zooids are relatively large for this genus, but they have fewer rows of stigmata than most other species. Synoicum prunum, which has a range on the mid- to northeastern Australian coast, also has firm gelatinous colonies but the known ones are larger than the present species, and the zooids are smaller, with narrow thoraces.
Many species of this genus known in situ have red colonies, often with red zooids, rather than the yellowish eolour of the present one.

Synoicum concavitum n.sp.

(Fig. 47. Plate 8 g)

Distribution

Type Locality: Western Australia (Eclipse I. SW entrance to King George Sound, rocky granitie reef, large boulders, coll. AIMS Bioactivity Group 26.3.89, holotype QM GH5465).
Further Records: None.

DESCRIPTION

External Appearance: The colony is an irregular cushion about 6 cm in maximum dimension and up to 3 cm thick. The test is firm, gelatinous, and slightly translucent. It is orange in life, but brown in preservative. Sand is on the under surface and sides of the colony, but the upper surface is naked and even. Sand is absent from the upper (thoracic) layer of test but is sparsely but evenly scattered through the lower part of the colony. The upper surface of the colony is depressed over the circularcloacal cavities. Branchial apertures of the zooids (about 12) in each system open around the perimeter of each depression. The ventral lobes of each branchial aperture extend horizontally directing the openings toward the large, protuberant cloacal aperture that rises from the centre of each depression.
Internal Structure: Zooids are brown in preservative. They are large, the thorax and abdomen of about equal length, and together about 3 mm long even when contracted. The branchial siphon is moderately long, with 6 pointed lobes, the ventral ones usually longer than the dorsal ones (see above). The atrial siphon, also protruding, has 3 small pointed lobes around its posterior rim, and a long strap-like tongue from the upper rim of the opening. This tongue has a straight tip with small denticulations on it.
A large number of fine longitudinal musele bands are on the thorax, making an almost con-

FIG. 47: Synuicum concavifum n.sp. (holotype QM GH5465) - a, part of colony from above; b, zooid. Scalcs: $\mathrm{a}, 1 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm}$.
tinuous coat. These extend in a band along the ventrum of the abdomen and along both sides of the posterior abdomen. Transverse muscles are in the transverse vessels. The pharynx is wide, with 15 rows of stigmata with up to 18 per row. The gut loop is moderately long, with the large, voluminous stomach about halfway down the abdomen. The stomach wall is smoroth, although in these specimens it often is collapsed into imegular or horizontal folds. The duodenum and proximal part of the mid-intestine are long, and almost continuous. There is an oval posterior stomach at the base descending limb of the gut loop. The posterior abdomen is relatively short and tapering in these zooids. Gonads are not developed.

REMARKS

The species resembles Synoicum Mropicum in the form of its systems. It is distinguished principally by the larger branchial sac of the present species.

Synoicum durum n.sp.

(Fig. 48)
Synnicum kuranui: Kott, 1963, p.88.

DISTRIBUTION

TYPE LOCALTTY: Queensland (Heron I., low lide, cull. R. Carson June 1961, holotype AM U3990).

Further Records: None.

DESCRIFTION

EXTERNAL APPLARANCE: Small wedge-shaped to inverted conical lobes, reducing in diameter toward the base, to 1 cm high and 0.8 cm diameter across the flat upper surface. Sand is in a surface layer around the sides of the lobes, and on the upper surface and internal test between the systems. Two to 4 circular systems, each of up to 10 zooids, open on the flat top of each of the lobes. and sand is absent from the surface above these systems. Each system has a eentral sessile common cloaca. At first the test is yellowish in preservative and zooids are red, but subsequently all colour is lost.

Internal Structure: The zooids are small. up to 2 mm long, of which the thorax and abdomen is about half. Ten longitudinal muscles are on each side of the thorax, and these extend in a wide band along each side of the abdomen and posterior abdomen. The branchial siphon is short and

FIG. 48: Synoicum durum n.sp. (holotype QM U3990) - a, colony; b, zooid; c, larva. Scales: a, 2mm; b, $0.5 \mathrm{~mm} ; \mathrm{c}, 0.1 \mathrm{~mm}$.

there are 6 distinct lobes. The rounded atrial lip is produced from the upper rim of the atrial siphon. A distinct median dorsal papilla is behind the atrial siphon. There are about 10 rows of 15 stigmata. The oesophagus curves ventrally to enter the large, smooth walled stomach. A gonadfree part of the posterior abdomen is behind the abdomen, but the posterior two-thirds of the abdomen is occupied by the irregular double row of large male follicles with the small ovary anterior to them.

Up to 2 embryos are in the posterior half of the atrial cavity. Tailed larvae are amongst the smaller viviparous larvae known, having a trunk only about 0.4 mm long. They have median and lateral ampullae, and an otolith and ocellus. The tail is wound about three quarters of the way around the trunk.

REMARKS

These colonies do slightly resemble those of the New Zealand S. kuranui Brewin, 1950 which, however, has shallow circular swellings on the stomach wall, giving it a slightly mulberry-like appearance. The species also resembles S. suarenum n . sp., having an atrial lip from the upper border of the opening, a smooth stomach, a dorsal papilla, embryos being incubated in the posterior half of the atrial cavity, and circular systems opening on the flat upper surface of the colony lobes. There is, however, a difference in the relative size of the zooids and larvae in these two species, viz. 2 mm and 0.4 mm respectively in S. durum, and up to 1 cm and 0.6 mm in S. suarenum n. sp.

Synoicum erectum n. sp.

(Fig. 49)

Distribution

Type Locality: Victoria (south of Warnambool, 250 - 350 m , from shark lincs, coll. V. Johnstone 14.5.69, holotype MV F59367). South Australia (SSW Eucla $33^{\circ} 17^{\prime} \mathrm{S} 128^{\circ} 12^{\prime} \mathrm{E}, 18 \mathrm{~m}, \mathrm{CSIRO}$ RV Soela 13.1.89, paratype SAM E2554).
Further Record: Victoria (27 ml east of Gabo $\mathrm{I}_{\text {. }}$ SAM E2555).

FlG. 49: Synoicum erectum n.sp. - a, colony outline (paratype SAM E2554); b, thorax and abdomen with embryo in atrial cavity (holotype MV F59367); c, internal wall of stomach (paratype SAM E2555); d, larva (holotype MV F59367). Scales: a, 1cm; b, c, $0.5 \mathrm{~mm} ; \mathbf{d}, 0.2 \mathrm{~mm}$.

Description

External Appearance: The holotype colony has been mutilated, but it appears to have been an upright cone, 3 cm high and about 3 cm in diameter across the flat base. The colony is covered with a thin layer of sand. Some root-like processes spread out around the base. Internally the test is very soft with only sparse embedded sand grains. Zooids, opening to the surface around the upper part of the cone, are crowded, possibly in circular systems. There is no trace of pigmentation in these zooids.
The Gabo I. and the paratype colonies are very similar to one another, smaller (to 2.5 cm high) than the holotype, and retaining red colour in the zooids which are seen through the relatively light encrustation of sand on the upper half of the colony. The lower half of each of these colonies is slightly reduced in diameter and is more thickly encrusted with sand, forming a short, thick stalk. The base of the stalk is packed with embedded sand, but there is very little sand embedded in the rest of the soft intemal test. Crowded circular systems of 8 to 9 zooids can be seen around the top half of each colony.
Internal Structure: Zooids are robust, but when contracted the thorax and abdomen are less than 1 mm long. The posterior abdomen is long. Branchial lobes are well defined, but relatively shallow. The atrial lip extends out from the anterior border of the aperture, long and fleshy, sometimes bifid at the tip, sometimes undivided and pointed, or with a fringe of up to 10 points on the straight edged tip. There is a small median dorsal papilla behind the atrial aperture. Longitudinal muscles (about 12) from the thorax extend back along each side of the zooid to its posterior extremity.

The pharynx has ahout 12 rows of about 8 stigmara, but these were difficult to count, as all the colonies have contracted zooids. The gut loop is almost the same length as the thorax in most of the examined zooids, but, as the thoraces are invariably more contracted than the abdomen, this ratio probably varies with the condition of the zooids.
The oesophagus is long, narrow and curves to enter the stomach. The stomach wall usually has glandular thickenings of the inner wall. However sometimes (SAM E2555) there are mulberry-like external sweilings on some parts of the stomach. The distal part of the descending limb of the gut loop has the usual long duodenum, expanded mid-intestine, posterior stomach, and narrow intestine opening into the rectum at the proximal
end of the ascending limb of the loop. The posterior abdomen is long and cylindrical. Only the ovary could be clearly identified, halfway down the posterior abdomen of the Gabo I. specimen (MV F2555).
Up to 2 embryos are incubated in the atrial cavity of specimens collected in May (MV F59637) and October (SAM E2555). They were not present in the paratype colony collected in January (SAM E5554). The larval trunk is about 0.7 mm long, and the tail is wound about three quarters of the way around it. There are median and lateral ampullae, and patches of postero-ventral and antero-dorsal epidermal vesicles.

Remarks

The zooids are small (though not as small as those of S. prunum), but the larval trink is longer than usual for Synoicum spp. Synoicum sacculum $\mathrm{n} . \mathrm{sp}$. has a similar temperate range to the present species; and it also has the atrial lip from the upper rim of the aperture, a mulberry-like stomach. narrow thoraces, and red zooids and colonies. However, S. sacculum n. sp. has a short posterior abdomen with bunched male follicles, a brood pouch constricted off from the thorax, and larvae with a shorter trunk than those of the present species. Also, S. sacculum has a multilobed colony with a naked surface that is produced into rounded protrusions over each system of zooids (unlike the present species which has a fine encrustation of sand and a smooth external surface).
The sandy lobes of this species resemble those of S. partitionis Monniot, 1987, from New Caledonia. The Jatter species is distinguished by its wide pharynx with 18 rows of stigmata as well as by its tropical occurrence.

Synoicum gralein. sp.

Macroclinum hypurgort: Michaclsen. 1930, p 535 f. galei.
Not Synoicum hypurgon: Kott, 1963, p. 86 ($>$ Aplddum spp.); 1976, p. 62 (ς Polyclinum fingosum).

Distribution

Type Locality: Westerin Australia (Fremantle Michaclsen 1930),
Futher Records: None.
DESCRIPTION (after Michaelsen 1930)
External. Appearance: The colonies are irregular, flat topped cushions or sheets, with broad ridges and furrows on the surface, up to 5 cm in maximum dimension and 1.8 cm high. The test is
soft, but with a tough, thin outer cuticle. Zooids (from 4 to 11) are arranged in circular to oval systems. The cloacal apertures are sessile, and depressed into a groove. Sparse sand is present on the margin, but the upper surface of the colony is naked.

Internal Structure: The zooids are about 1 cm long, of which about 8 mm is posterior abdomen. The thorax is longer than the abdomen. The branchial lobes are inconspicuous. The atrial siphon has the tongue extending from the upper rim of the aperture. Two loose bands of muscle extend along each side of the zooid to its posterior end. The stomach is smooth-walled. A brood pouch is constricted off from the postero-dorsal comer of the thorax. It always contains 2 embryos.

REMARKS

Despite the difference in colonies and the absence of the faecal pellets that occur in the type specimen from New Zealand, Michaelsen (1930) assigned the Western Australian specimen to S. hypurgon on the basis of the similarities in the zooids. However there are differences between the New Zealand and Fremantle colonies, and they are not conspecific. A new species is erected to accommodate the Fremantle specimens referred to S. hypurgon f. galei: Michaelsen, 1930. The species is distinguished from others which have the atrial lip associated directly with the rim of the aperture by the smooth stomach wall, absence of a dorsal papilla, and the flat-topped irregular colony with surface ridges and furrows.

Kott (1963), interpreting the dark oval bodies embedded in the test as faecal pellets, assigned colonies - one each from Heron I. and Rottnest 1. - to the present species. Re-examination of these specimens (AM Y1382 U3991) has shown them to be Aplidium lobanum.

Embryos are incubated in a brood pouch (as they do in the present species) in S. sacculum n. sp., which has lobed colonies, a dorsal papilla and a mulberry-like stomach wall distinguishing it.
The broad ridges and furrows on the surface are reminiscent of those in Aplidium crateriferum $\operatorname{and} A$ - lobatum $\mathrm{n} . \mathrm{sp}$. However the latter species has a distinctive zooids which more closely resemble those of S. papilliferum (see below) than of the present species.

Synoicum intercedens (Sluiter, 1909) (Fig. 50)

Morchellium intercedens Stuiter, 1909. p. 108.

Synoicum intercedens: Monniot and Monniot, 1987. p. 81.

2Synoicum suesarum Michaelsen, 1919. p.27,

DISTRIBUTION

New Records: Queensland (Capricorn Group, QM GH5084-5101 GH5105-7 GH5180 GH5 I82 GH5193 GH5253 GH5256 GH5282 GH5499 GH5566 GH5571-2 GH5591-2 GH5608 GH5672)-
Previously Recorded: Indonesia (Sluiter 1909), Moorea, Tahiti (Monniot and Monniot 1987).

Although at present there are no records from Australian locations, other than those from the southerm end of the Great Barrier Reef, it is probable that the species will be found generally around the northern part of the continent and in the western Pacific.

DESCRIPTION

External Appearance: The colonies form cushions up to 3 cm long with the upper surface divided into low, rounded swellings to domes from 3 to 10 mm in diameter, projecting up to 5 mm from the solid sandy basal common test and outer margin of the colony. Each of these protuberances has a large central scssile common cloacal aperture. One specimen has a few randomly distributed test swellings each containing a single system of juvenile zooids on the surface of a mass of firm gelatinous basal test (QM GH5090) and probably is a regenerating colony. Sometimes only a shallow crease is in the surface test delineating the circular area that is homologous with a rounded projection in other specimens. Sand sometimes lies in the crease between the surface swellings, and is present in the basal test. Up to 10 zooids are in each system.

The test is particularly opaque and firm in consistency in larger colonjes, but is transparent and soft but firm in small ones. The living colonies are a chestnut or claret colour, or 'claret brown', or 'chocolate brown', or 'aster purple' (Ridgeway 1886), with 'madder brown' cells throughout the test Some small colonies, when living, are described as 'red cherries projecting from sandy base and margin'. Zooids are 'burnt carmine' or aster purplé (Ridgeway 1886), of brownish. black. Basally colonies are yellowish, probably owing to the embedded sand showing through the brown test. In preservative the colonies are light yellowish, cloudy and translucent and the zooids are reddish-brown.

INTERNal STRUCTURE: Zooids are up to 1 cm long. Six rounded lobes surround the branchial aperture. The atrial siphon is relatively large, its

upper border is produced into a long lip with 3 small lobes on its tip. Sometimes the atrial lip curves around to form a tube with its lumen continuous with that of the siphon itself. A small papilla projects from the dorso-median line near the base of the posterior border of the atrial siphon. Eight fine longitudinal and oblique museles are on the thorax and these extend along each side of the abdomen and posterior abdomen in a narrow band. There are 14 to 17 rows of 12 to 14 stigmata. The cesophagus is curved, entering the relatively shon dorsal border of the stomach. The stomach wall is covered with rounded prominences (mulberry-like). The duodenal area is wide, the mid-intestine inflated and an oval posterior stomach is in the bend of the gut loop. The anal opening is about one-third of the distance up the thorax.
Gonads are in the middle third of the posterior abdomen, the small ovary behind the most anterior of the testis follieles, which extend back in a single series, or are bunched together when muscles contact.
Two embryos (but not tailed larvae) are in the posterior part of the atrial cavity of specimens collected in November (QM GH5087). Specimens collected in April and May have 3 embryos including a tailed larvae lined up in the atrial cavity (QM GH5088 GH5091). The larval trunk is about 0.50 mm long. It has median and lateral ampullae alternating with the adhesive organs. Epidermal vesicles brunch off strands that extend along each side of the mid-dorsal line as in Polyclinum, but ventral vesieles appear to be median. The lateral ampullae sometimes appear to have lost their connection with the epidermis.

Remarks

The species is distinguished from others by its surface swellings cach containing a circular sysfem, and its mulberry-like stomach. The surface swellings are very variable and they are not always conspicuous. Thus the fact that Sluiter (1909) did not observe them may not be significant. Other characters of the newly recorded material conform with the type specimen, and the Australian and Indonesian specimens appear to the conspecific. Synoicum intercedens: Monniot and Monniot, 1987, has fewer rows of stigmata than either the type or the present Australian specimens, and the mumber of stigmata per row

FIG. 50: Synoicum intercedens - a, colony (QM GH5087): b, zooid (QM GH5087); c, larva (QM GH5107). Scales: a, $5 \mathrm{~mm}, \mathrm{~b}, \mathrm{Imm}: \mathbf{c}, 0.1 \mathrm{~mm}$.
has not been reported. Otherwise these French Polynesian specimens appear to conform with the type material. Synoicum suesanum Michaelsen, 1919 has similar colonies with circular systems, and 13 to 15 rows of stigmata with 10 to 12 per row. Michaelsen (1919) distinguished the species by the depression separating the systems. However that depression sometimes occurs in S. intercedens. There is no known character separating S. suesanum from the present one.

The new Australian temperate species Synoicum sacculum r. sp. has a mulberry-like stomach, but its systems are not separated from one another by grooves or depressions, and a single embryo is incubated in a stalked brood pouch. The tropical Synoicum suarenum n. sp. which is sympatric with S. intercedens and is the same dark colour has, like S. sacculum n.sp., many circular systems in each of its wedgeshaped lobes, and lacks grooves or subdivisions which, in the present species, tend to isolate the systems from one another. Synoicium suarenum n.sp. is further distinguished by its smoothwalled stomach and larger larval trunk.
Synoicum macroglossum (Hartmeyer, 1919) and S. tropicum (Sluiter, 1909) are also distinguished from the present species by their smoothwalled stomachs.

Synoicum longistriatum n.sp.
(Fig. 51)

Distribution

TYPE LOCALITY: Western Australis (off Cockburn Sound, $32^{\circ} \mathrm{S} 155^{\circ} 08^{\circ} \mathrm{E}$ CSIRO Cruise 144/DM4/63. 110 m, coll. L. Thomas 28.8 .63 , holotype QM.GH5583. Further Records; None,

DESCRIPTION

External Appearance: The colony is an upright, almost cylindrical lobe, slightly expanded terminally. It is 7 cm high and about 3 cm in diameter. Basally there are sandy root-like projections of the test. The lower third of the lobe, comprising the lower part of the stalk, is transversely wrinkled, and covered with a layer of sand. The middle third has a layer of finer sand and is not wrinkled. The naked upper third has openings of the crowded zooids. These, seen through the transparent test, appear to be arranged in crowded longitudinal rows converging to cloacal apertures on the terminal free end. The crowded zooids are perpendicular at the surface, but posteriorly they curve down into the stalk of the colony.

Internal Structure: In this colony a large quantity of sand fills the pharynx of most of the zooids, obscuring its structure. The branchial apertures have 6 lobes, and atrial apertures are large openings with the upper rim extended out to form a tongue. About 12 fine longitudinal muscles are in the thoracic body wall. These extend along the length of the abdomen and posterior abdomen. Stigmala are in 16 rows of about 16. The stomach is large and voluminous, without longitudinal folds, but sometimes collapsing into irregular or horizontal ones. Double rows of male follicles are in part of the long posterior abdomen of some of the zooids, although the ovary was not detected.

FIG. S1: Synoicum longistriatum n.sp. (holotype QM GH5583) - colony. Scale: 1 cm .

REMARKS

The colony is distinctive and unique in this genus, superficially resembling that of Distaplia australiensis (sce Kot 1990). However, the zooids are characteristic of the Polyclinidae. The Aplidium species with longitudinal double-row systems converging to the lop of the head, viz. A. australiense, A. geminatum n.sp., A. inflorescens n.sp. and A. paralineatum n.sp. are distinguished by their numerous stomach folds. The shape of the colony and its sandy surface resembles S. atopogaster, but the form of the systems differ.
It is unfortunate that this unique specimen is not well preserved. Nevertheless as it is a unique colony form and unlikely to be confused with other species in this genus, it is considered appropriate for it to be designated holotype. It is probable that damage was caused to the specimen by the way it was collected (beam trawl), rather than its treatment after collection.

Synoicum macroglossum (Hartmeyer, 1919)
(Fig. 52. Plate 9a)
Macroclinum macroglossum Hartmeycr, 1919, p.126,
Distribution
New Records: Queensland (Heron I., QM GH5055; Mackay, QM GH5421).
Previously Recorded: Western Australia (Cape Jaubert - Hartmeyer 1919).

Description

External Appearance: One colony (QM GH5055) is a large flat-topped cushion 6 cm in diameter, 2 cm high, with rounded margins and a vertical border. Sand is present on the base and around the border, but not on the upper surface. Sparse sand is present internally in the lower half of the colony, but it becomes even more sparse toward the centre, as if it was gradually moving in from the sandy outer border. The colony from

FlG. 52: Synoicum macroglossum - a, colony (QM GH5421); b, whole zooid severed between thorax and posterior abdomen (QM GH5055); c, d, thorax and atrial aperture, with arial lip shown in different positions (QM GH5421 GH5055); e, portion of right branchial wall (QM GH5055). Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, \mathrm{c}, 1 \mathrm{~mm}$; d, e. 0.5 mm .

Mackay is an upright cone, 6 cm high, with sand around the base and sparsely embedded through the test.

The test is translucent and gelatinous but firm and rigid in both specimens. Circular to long, Jow swellings, with shallow depressions between them are on the upper surface. The small and inconspicuous branchial openings can be seen around the periphery of the swellings, and in the depressions between them. Large cloacal apertures occur in the depressions, especially where 2 or more converge. These apertures either are sessile, or they protrude on surface swellings created by thickened test over the circular cloacal cavities that ane formed at the junctions of the cloacal canals.
Intemally the posterior ends of the zooids crisscross one another. The test is pale yellowishbrown to greenish-yellow in preservative, and the preseryative itself is stained yellow-orange. One living specimen (QM GH5055) was, mummy brown internally and 'seal brown' (Ridgeway 1886) on the surface. The other (from Mackay) is said to have been black when living.

Internal Structure: Zooids are long (to 1.5 cm) and narrow. The thorax is about one-third of the length of the zooid, and the abdomen and about half of the gonad bearing part of the posterior abdomen together comprise another third. Eight longitudinal muscles extend the length of the thorax, and are reduced to 2 or 3 each side of the abdomen and posterior abdomen. The branchial aperture is on a trumpet-shaped siphon that appears to be fixed in the firm surface layer of test. A sphincter is around the base of the siphon. The long, muscular atrial lip has a dentate tip, and is difficult to remove from the lest where it lies over the top of the cloacal cavity. It arises from the body wall opposite the first row of stigmata, anterior to the muscular atrial aperture which lies opposite the third row of stigmata. A sphincter is also present around the atrial aperture. When contracted, the atrial lip curves over the aperture. A papilla projects from the body wall just behind the atrial siphon opposite the fifth row of stigmata. Nineteen rows of 12 to 14 fairly long stigmata are in the branchial sac, although the number reduces posteriorly. A wide strip of unperforated lest is each side of the endostyle. There is a minute papilla on each transverse vessel at about the level of the third ventral stigma on each side of the body. A row of robust dorsal languets are to the left of the dorsal mid-line.
The gut loop is vertical and narrow - the oesophagus curves ventrally to enter the bilater-
ally symmetrical, smooth-walled stomach. The duodenum is large, the mid-intestine inflated and a large oval posterior stomach is in the bend of the gut loop. The bilabiate anus opens at the level of the fourth row of stigmata from the posterior end of the thorax.
A very short gonad-free part of the posterior abdomen is behind the gut loop. A small avary is anterior to the oval testis follicles which are in 2 longitudinal series, altemating with one another. Sometimes (but not always) an extent of the posterior end of the posterior abdomen is froe of gonads. A V-shaped heart is in the posterior extremity of the posterior abdomen. The newly recorded specimens collected in November, have well-developed ovaries, but no embryos were found.

REMARKS

The species is distinguished by its protruding atrial siphon, separate atrial lip, narrow zooid and roberst cushon-shaped colony. The type specimen differs from the present one in the presence of a layer of sand on the upper surfaces as well as around the margin; and in the presence of up to 14 rows of stigmata rather than the 18 of the present eastem Australian colonies. Hartmeyer (1919) did not observe the small branchial papilla towand the ventral end of each transverse vessel, but these are inconspicuous and obscured unless the thorax is completely relaxed.
The dorsal papilla and separate atrial lip are like S. papilliferum (Michaelsen, 1930) and the zooids also have similar numbers of stigmata. However, although Michaelsen believed the dorsal papilla was unique to his species (see below), it occurs in both Polyclinum and Synoicum, Although the conspicuous cloacal apertures and long curving double row systems of the present tropical species may be different from S. papilliferum (in which Michaelsen did not find any cloacal apertures and could not determine the form of the systems), at present the only character definitely known to separate the species is the presence of sand adhering to the external test of the temperate S. papilliferum. Species of Aplidium with similar zooids (e.g. A. lobatum, A. cratifertim) lack a median dorsal papilla, and have different systems from those of the present species. Synoicum chrysanthemum has similar systems, but the colonies are different.

Synoicum obscurum n.sp.

(Fig. 53)

Distribution

TyPE LOCALITY: Vietoria (Bass Strait, reef off Ninetymile Beach, 90 km SW of Lakes Entrance, coll. J. Watson R3E/36 1977, holotype QM G|2726, paratype QM G12727).
Further Record: NSW (Arrawarta, QM GH5589).

DESCRIPTION

External Appearance: The colonies arc thick mats with sand crowded throughout making them hard and brittle. The mats are made up of sandy cone-shaped, upright lobes which adhere closely to one another. The terminal free ends of these lobes project from the upper surface of the colony as rounded swellings, each of which accommodates a circular system of up to 12 zooids. Zooids are tightly enclosed in the sand and hard to remove from it although the thin channels that accommodate the zooids are rigid. The zooids surround a shallow common cloacal cavity (in the terminal cnd of each lobe) which opens through a common cloacal aperture in the centre. Branchial aperturcs are inside, and protected by, the rounded margin of the terminal end of each lobe, The cloacal cavities beneath the upper surface of colony confer a loose appearance to the surface layer of brittle sand-filled test.
Internal Structure: The zooids are relativcly muscular, with about 20 longitudinal bands on the thorax. These muscles extend posteriorly to form a band along each side of the mid-ventral line. Zooids are telatively long, even when contracted the thorax, abdomen and gonad-bearing anterior part of the posterior abdomen are about 6 mm long, while the long posterior part of the posterior abdomen, without gonads in it, extends into the sandy base of the colony.

The 6 branchial lobes are rounded. An atrial siphon protrudes from the dorsal surface, and a flat atrial tongue with a tridentate tip is produced out from the upper rim of the opening. The lower rim of the atrial opening is divided into 3 small lobes. A pointed median dorsal papilla is at the base of the atrial siphon. About 20 rows of up to 20 stigmata appear to be present, although the pharynx is too contracted for accurate counts. lrregular internal glandular arcolations of the stomach wall are present. especially on the mesial side of the stomach (against the intestine). A few

FIG. 53: Synoicum obscurum n.sp. (holotype QM G12726) - a, colony; h, zooid; c, larva, tail removed. Scales: a, $5 \mathrm{~mm} ; \mathrm{b} .1 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.

of these shallow glandular areas sometimes form irregular longitudinal ridges which resemble the longitudinal folds of Aplidium. The duodenat, mid-intestinal and posterior stomach regions are characteristic for the genus.
In the type material, a large ovum is present behind the gut loop, anterior to a short double longitudinal series (about 8 per series) of testis follicles. The posterior abdomien continues posterior to the testis follicles, which protrude dorsally from it as a result of the contraction of the ventral muscles. Four or 5 embryos are crowded in the atrial cavity.
The larval trunk is 0.6 mm long. The anterior end is obscured by numerous narrow ectodermal ampullae. There are 3 median adhesive organs, and an ocellus and otolith are in the cerebral vesicle.

REMARKS

A similar colony form is found in many species of Aplidium (e.g. A. bacculum n.sp., A. filiforme n.sp.). However, despite the presence of some longitudinal glandular ridges in the stomach wall, the present species is distinguished from the genus Aplidium by the shape of its zooids with a relatively primitive lobed atrial opening and the median dorsal papilla.
Synoicium durum has colonies consisting of sandy lobes, but the test above each system is naked, and each lobe has 2 or 3 systems.

Synoicum papilliferum (Michaelsen, 1930)
Macroclinum papilliferum Michaelsen, 1930, p. 530.
Synoicum papillifersum: Millar, 1966, p.360. Not Kott,
1963, p. 87 (< Polyclinum ternatum n. sp.) ; 1972:1, p.I6; J972b, p. 177 (< S. sacculum n. sp.)

DISTRIBUTION

New Records: Nonc.
Previously Recorden; Western Australia (Bunbury - Michaelsen 1930). Victoria (Nepean Pcninsula Millar 1966).

DESCRIPTION (after Michaelsen 1930)

External Appearance: Colonies afe cushion shaped or integular sheets, up to 3 cm diameter and 2.4 cm high. Sometimes they are fixed by a narrowed base. The preserved colonies are transparent and yellowish, with an external layer of sand. Some sand is present internally but it is not as crowded as it is externally. The outer layer of test is lough. Cloacal cavities are present at the level
of the atrial apertures, but cloacal apertures were not seen.
Internal Structure: The zooids are vertically arranged in the test, with their posterior abdomina criss-crossing. The body wall is delicate with about 10 longitudinal muscle bands. The branchial siphon is conspicuous with a well developed sphincter at its base. The short atrial siphon, surrounded by a sphincter mascle, projects laterally from the body wall a short distance behind the atrial lip, which is narrow, but not Jong, and its tip is produced into 2 or 3 small papillae. A conspicuous median papilla projects from the body wall just behind the atrial siphon. Sixteen or 17 rows of 9 or 10 stigmata are in the long, narrow thorax. The oesophagus curves to enter the smooth stomach which is about halfway down the abdomen. A short gonad-free area is behind the abdomen, in front of the single row of male follicles that ocoupies the rest of the narrow posterior abdomen. When the posterior abdomen contracts, the male follicles are drawn up into a double row. Two short vasculat stolons project from the end of the zooid.

Remarks

Although Michaelsen thought the papilla was unique, it does occur in species of Polyclinuon as well as in other Synoicum species. Nevertheless Kott (1963, 1972a,b) followed Michaelsen and assigned specimens of S. sacculum n. sp. and Polyclinum tenuatum to this species because, like S. intercedens and S. suarenum n.sp., they had a dorsal papilla. However, all these species are readily distinguished from the present one by having the atrial lip extending from the anterior rim of the aperture. Synoicum macroglossum has both a separate atrial lip and a dorsal papilta, but is distinguished from the present species by its conspicuous cloacal systems with raised cloacal apertures and the absence of an extermal layer of sand.
Although they differ in having a dorsal papilla, zooids of the present species, with their long, narrow thorax, long museular branchial siphon, and atrial siphon separate from the atrial lip. resemble those of certain Aplidium spp, (e.g. A. cratiferum, A lobatum, see below). The stomach folds of some of these Aplidium spp. are few and indistinct, but they all have distinct cloacal systems that distinguish them from the present species.
Millat (1966) records that his specimens of S. papilliferum had all the features of the type specimens, except the dorsal papilla. However, as there
is no other known temperate species of Synoicum with similar characters, it is possible that the papilla was obscured in the matcrial he examined.

Synoicum prunum (Herdman, 1899)
(Fig. S4. Plate 9b)
Psammaplidium prunurn Herdman, 1899, p. 84. Synoicum prumum: Kotu, 1963, p.87.

Distribution

New Records: New South Wales (Artawarra, QM GH5394). Qucensland (Bribie 1., QM G2102; off Cape Tributation. QM GH799).
Previousty Recorded: New South Wales (Port Jackson - AM G2101 Herdman t899).

DESCRIPTION

External Appearance: Like the holotype, the colony from Cape Tribulation is upright, oval, converging to a narrow sandy base produced into sandy roots. It is about 7 cm bigh and 4 cm in diameter. The specimen from Bribie I, is massive (14 cm long and 9 cm maximum diameter), lumpy. oval and football-shaped overall, but with deep creases dividing it into lobes, It has no obvious point of fixation.
The internal test always is lim and gelatinous with long tough fibres in it. It is almost opaque in preservative, whilc the outside layer is tough and hard with occasional patches of sand embedded. The long thread-like zooids are found withdrawn from the surface and criss-cross one another through the internal test. Their arrangement is obscure and the form of the systems was not determined.

InTERNAL STRUCTURE: Both newly recorded colonics are in a vegetative stage, many developing buds being present. Adult zooids are thin and thread-like. The very long thin postcrior abdomen is up to 2 cm , being many times the length of the rest of the zooid (only about 2 mm long when contracted). The contracted thoraces (QM GH799) are slightly longer than the abdomen, and when extended (QM G2102) they are at Icast twice the length of the abdomen. Abrout 12 fine longitudinal museles are on the thorax and these extend the length of the zooid in a band on each side. A single fleshy atrial lip continuous with the anterior rim of the atrial aperture has a straight tip with a single, small, pointed, modian tooth. The branchial lohes are only shallow. A small dorsal papilla arising from the body wall behind the atrial aperture can be seen in the contracted zooids, but was not detected in the extended ones.

Fourteen dorsal languets were counted in the specimen from Cape Tribulation, indicating that there are 15 rows of stigmata. the same number as in the Bribie I. zooids. The thoraces are charactcristically narrow and up to 8 stigmata per row were counted. The abdomen is small. The narrow and characteristically long nesophagus curves to enter the smooth-walled, small stomach which is halfway down the abdomen. The relatively long duodenum, inflated mid-intestine and posterior

FIG. 54; Synoicum prunum - a, colony outline (QM GH799); b, shorax and abdomen (QM GH799); c, larva (holotype AM G2101). Scales: a, 2 cm ; b. 0.2 mm ; c, 0.1 mm .
stomach are distal to the stomach in the descending limb of the gut loop. Gonads are not developed in the newly recorded specimens. They are present in the long posterior abdomen of the type specimen, which also has 2 embryos in the atrial cavity.

The laryal trunk is 0,55 to $0,65 \mathrm{~mm}$ long, It has median and lateral ectodermal ampullae alternating with the 3 median adhesive organs, and patches of ectodermal vesicles antero-dorsally and postero-ventrally.

REMARKS

The large, almost naked colonies of this species are unique in the Australian fauna. There are some dark, greenish-black colonies of Polyclinuin vasculosum reconded from Moreton Bay that reach the same size as the present species and superficially can be confused with it. Synoicum cifrum has naked but sessile colonies, smaller than those of S. prunum, with larger zooids, fewer rows of stigmata and more stigmata per row.

Synoicum sacculum n. sp.

(Fig. 55. Plate 9c-c)
Sywoicum papilliferwa: Kott 1972a, p.16: 1972b, p.177; 1976, p. 62.

Distribution

Type Locality; South Australia (Waldegrave 1, in caves, 2 m strong waves, coll. $\$$. Shepherd 25.11.73, holotype SAM E2556, paratypes QM GH5044). Vicroria (Flinders, jetty piles, 5 m , coll. N. Coleman 18.6.77 AMPI 201, paratype QM G10163).

Further Records: South Australia (St. Vincent Gulf, West I, - Kott 1972a; Thorny Passage, SAM E2491), Tasmania (W. Granville Harbour, SAM E2552).

The Tasmanian specimen was taken from a depth of 425 m .

DESCRIPTION

External Appearance: The colony consists of crowded sessile, flat-topped to rounded lobes about 1 cm in diameter rising from a sandy basal membrane or test mass. Sometimes the lower half of the lobe is constricted to form a thick stalk with some sand embedded. Sand is sparse intemally in the upper part of each lobe. Sand is sometimes present on the upper surface, although the test above the zooid systems is usually left naked. The test is very soft intemally. Zooids form circular systems of 2 to 3 mm diameter with up to 10 zooids around a central cloacal aperture. The cloacal apertures are aboul 2 cm ipart, and are
evenly spaced on the top of each lobe. In one small (1.7 cm high) flat-topped colony (SAM E2491) the branchial openings are around the outer margins of surface depressions, and sessile cloacal apertures are in the centre. The test is raised in firm rounded ridges between the depressions.
In life the lobes are bright red, with bright red zooids. In preservative the test is yellowish and translucent, and the preservative is stained a yel-lowish-red.

Internal Structure: The zooids are 2 to 3 mm long, with a short posterior abdomen. The thorax, abdomen and posterior abdomen are each about one third of the total length. There is a fine, short posterior vascular stolon. About 6 fine lontgitudinal and oblique muscles are on the thorax and these continue along the length of the zooid. Strong muscles extend from the branchial siphon along the atrial siphon (which often is long) onto the atrial lip which continues out from the anterior rim of the opening. The straight tip of the atrial lip has 3 narrow finger-like papillae evenly spaced along it. A papilla is in the mid-dorsal line behind the atrial aperture, sometimes cartied out along the siphon when that is produced dorsally.

About 8 short stigmata are in 9 or 10 rows. The oesophagus is long and curved, and the stomact, about halfway down the abdomen has mulberrylike swellings in its wall. The duodenal area is long, the mid-intestine inflated, and an oval stomach is in the bend of the gut loop. The antal opening is opposite the third last row of stigmata. Colonies with large mature male follicles in the short posterior abdomen have about 20 bunched around the ovary (SAM E2491, QM GH5044). These colonies also have one to 3 embryos, up to the tailed larval stage, present in a brood pouch constricted off from the postero-dorsal corner of the thorax.

The larval trunk is almost spherical, 0.4 mm in diameter, with otolith and ocellus, postero-ventral vesicles, and median and lateral ampullae anteriorly. The tail is wound about three quarters of the way armund it.

REMARKS

The form and colour of the colonies is distinctive, as are the atrial lip from the anterior rim of the opening with finger-Jike papillae on its tip, the mulberry-like stomach, and the short posterior abdomen with bunched male follicles. The spherical larval trunk also is unusual. The brood pouch constricted off from the body wall is reminiscent of the one described for Macroclinum

hypurgon f. galei: Michaelsen, 1930 although the latter contains 2 embryos, its stomach is smooth, and its colonies are not lobed.

A dorsal papilla similar to the one in the present species, a short posterior abdomen and a similar atrial aperture occurs in the tropical species S. suarenum $\mathrm{n} . \mathrm{sp}$. However in the latter species the stomach is smooth, the larvae are not spherical and a brood pouch is not constricted off from the body wall.

Synoicum erectum, a species that overlaps the South Australian range of the present one, has sandy colonies consisting of single lobes rather than the many lobes of the present species. The zooids can be distinguished by their longer posterior abdomen, longer larval trunk and absence of a brood pouch.

> Synoicum suarenum $\mathrm{h} . \mathrm{sp}$.
> (Fig. S6. Plate 9f,g)

Sywicum kuranuit Kott, 1981, p. 159.
Syvoicum ?ै clavatum: Millar, 1975, p.255.

Distribution

Type Locality: Queensland (Capricorn Group, Wilson Reef, rubble zonc, low tide, coll. P. Koul Jan 1977, holotype QM GH5080; Heron 1., rubble zone, low tide. coll. P. Kott 4.11.86, paratype (MM GH5070).
Further Records: Queensland (Capricorn Group, QM GH5066-9 GH5071-9 GH5081-3 GH5176 GH5178; Hardy Reef, QM GH5377; Lizard 1., QM GH5277 GH5586); Fiji (Kott 1981). Indonesia (Millar 1975).

DESCRIPTION

External Appearance: Flat-topped wedgeto top-shaped lobes, crowded together and narrowing to the base where they are joined by common basal test or by connecting strands to adjacent lobes. Sometimes the basal stalk portion of the lobe is branched and there are 2 heads from a basal common stalk. Colonies from Hardy Reef have long stalks (longer than those from Heron 1.); narrowing toward the base. When alive and inllated the separate lobes that make op the colony appeat confluent. The separate lobes are more apparent when it is removed from the substrate. The flat-topped lobes are up to 2.5 cm high and up to 3.0 cm in diameter at the top. In life colonies have a characteristic appearance resembling a pig's kidney both in colour and form. They
are always opaque, shiny cherry coloured, crimson, and a dark maroon, plum colour, or 'pansy"' 'pomegranate-". 'Indian-' to 'aster-purple' (Ridgeway 1886). In preservative colonies become brownish-black, but the colour eventually is lost altogether. At first the preservative is stained orange-yellow, and clouds of brownishblack pigment cells are in the test. Circular cloical systems of 4 to 8 zooids are evenly spaced over the surface. The central common clearal apertures are in slight surface depressions about 2.5 mm apart, and each system is about 2.5 mm in diameter. The rim of each common cloacal aperture has small denticulations, into which the denticulations on the tip of the atrial lips of each zooid fit. The cloacal chambers are shallow and circular being almost completely open to the exterior through the large cloacal aperture. The test is firm and gelatinous, Sand is absent from the surface, and from the intemal test. Up to 15 systems oceur in one lobe of the colony.

Internal Structure: The zooids are less than 1 cm in length, even when distended, and the thorax is half the total length of the zooid. The posterior abdomen is generally relatively short for aspecies of this genus. One or 2 short vascular appendages are at the posterior end of the posterior abdomen. The 6 branchial inbes are small and pointed. The atrial siphon is short but wide, with its upper bordes produced into a shorl, broad tongue with 3 to 5 shont pointed teeth on its broad, straight outer edge. There is a median pointed papilla projecting out from the dorsal line behind the atrial aperture. About i2 fine longitudinal and oblique thoracic muscles in bands of mederate width extend along each side of the thorax and abdomen and are inserted into a projecting born on each side of the posterior abdomen. Sixteen tows of 10 short, oval stigmata are in the branchial sac, each row reducing in length dorsally and ventrally. The oesophagus is curved and the dorsal border of the stomach between the cesophageal and duodenal openings is relatively short. The stomach wall is smooth externally, but internally it has some glandular areolations. The duodenal areat is long, the mid-intestine inflated and an oval posterior stomachis in the bend of the gut loop. The bilabiate anus is about one-third of the distance up the thorax, The posterior abdomen is continuous with the abdomen and the gonads are in its posteriot half, there being a narrow gonad-free neck of variable length behind the gut

FIG. 55: Synoicum sacculam n.sp. - a, b, colonies (paratype QM G10163, a, showing circular systems; b, colony outline); c, zooid with embryo in brood pouch (SAM E2491); d, thotax (paratypc QM G10163); e, Inrin (paratype SAM E5044). Scales: a, $2 \mathrm{~mm} ; \mathrm{b}, 1 \mathrm{~cm} ; \mathrm{c}, \mathrm{d}, 0.5 \mathrm{~mm} ; \mathrm{e}, 0.1 \mathrm{~mm}$.
loop. The ovary is mixed in with the anterior testis follicles, which are either in one or 2 irregular longitudinal series or, when muscles are contracted, bunched in the posterior end of the posterior abdomen, giving it a sac-like appearance. There are about 20 testis follicles.

Embryos (up to 3) are in the posterior end of the atrial cavity of zooids collected in January, April and May. Tailed larvae have a trunk about 0.6 mm long. Median and lateral ampullae are present. A postero-ventral cluster of epidermal vesicles is in the larval test each side of the mid-line, near the

FIG. 56: Synoicum suarenum n.sp. - a, colony with longer lobes (QM GH5377); b, colony with short lobes (holotype QM GH5080); c, colony from above showing systens (QM GH5067): d, zooid (QM GH5067); \mathbf{e}, posterior abdomen showing gonads bunched in posterior end (paratype QM GH5070); f, harva (QM GH5073). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 2 \mathrm{~cm} ; \mathbf{c}, 5 \mathrm{~mm} ; \mathrm{d}, \mathrm{e}, 0.5 \mathrm{~mm} ; \mathbf{f}, 0.2 \mathrm{~mm}$.
base of the tail. These separate from an epidermal strand that trails posteriorly through the test, from each side of the mid-line ventral to the adhesive organs. A similar strand of epidermis from which epidermal vesicles separate off into the dorsal test above the endostyle is on each side of the middorsal line behind the adhesive organs. The tail winds about two-thirds of the distance around the trunk. The lateral ampullae separate from the rest of the larval ectoderm and become large and spherical.

Remarks

In those colonies with male follicles clumped in the posterior end of the zooid, the anterior part of the posterior abdomen is relatively narrow, resembling the neck of a polyclinid posterior abdomen. However, the species has characters of Synoicum rather than Polyclinum, viz. the mid-intestine is large and inflated, the gut loop straight and relatively long, and the cloacal systems small.
Synoicum clavaum (Oka, 1927) from Japan resembles the present species in some characters, but it differs in having larger round-topped rather than flat-topped Iobes with longer, narrow stalks, There is some confusion regarding the characters of the Japanese species, however, for Nishikawa (1990) records 20 to 24 Jongitudinal muscles and 10 to 12 stigmata, but Tokioka (1954b) reported only 12 muscles and 20 stigmata (see Tokioka $1954 \mathrm{~b}, \mathrm{Pl}$. IVF). The colours of living colonies of the Japanese populations, which could provide more evidence of their relationships with one another and with the present species, have not been recorded.
Synoicum clavarum: Millar, 1975 from the Philippines has flat-topped lobes containing circular cloacal systems similar to those of the newly recorded Australian material; and the zooids have 8 to 9 longitudinal muscles similar to those from Heron I. However, although they are in 15 rows like the Australian material, Millar reports about 20 stigmala per row in his specimens. The flattopped Philippine colonies, therefore, are only questionably conspecific with the Australian colonies. The dorsal papilla has not been recorded for Philippine or Japanese specimens, Syoicum kuranui Brewin, 1950b from Great Barrier I. (New Zealand) are sandy capitate lobes with crimson zooids and areolated stomach walls and are readily distinguished from the present species. Synoicuin kuranui: Kott, 1963 from Heron L. is not conspecific with either the present one or with the New Zealand species (see S. durum, above). The sympatric S. intercedens has sessile
cushion-like colonies with sandy matgins. Their upper surface with swellings corresponding to the systems, larger systerns, longer atrial tongues, a mulberry-like stomach and a smaller larva.
Synoicum suarenum is a tropical species and it differs from the temperate S. saceulum by the shape of the colony lobes (sessile in S. sacculum), the smooth stomach wall (mulberry-like in S, sacculum), and the small, almost rudimentary cloacal systems with the wide cloacal aperture exposing the cloacal cavity to the exterion, as in some Eudistoma spp. (angolanum group: Kott 1990).

Synoicum tropicum (Sluiter, 1909)
(Fig. 57)
Atopogaster iropicum Sluiter, 19(09, p. 107.

Distribution

New Record: Westert Australi3 (NW Shelf, QM GH5056).
Previously Recorded: Indonesia (Sluiter 1909),
The species is known only from the type and from the newly recorded portion of a colony.

DESCRIPTION

External Appearance: The speciment is a wedge-shaped slice of what appears to have been a large, upright lobe, about 12 cm high. The test is firm and the surface naked.
Zooids ane arranged in cifcular systems of 8 to 20. The branchial apertures are around the margin of a circular depression about 5 mm diameter in the surface test. A conspicuous common cloacal aperture protrudes on a conical prominence in the centre of each circle of zooids. The test is white and opaque, with a patch of dark pigment where each zooid opens to the surface. Common cloacal apertures are about 7 mm apart, an area of test without zooid openings separating the circles of branchial apertures from one another.
internal Structure: The zooids in the present piece of a colony have not been adequately fixed and cannot be dissected or manipulatad without disintegrating. They are, as in the type specimen, perpendicular to the surface. The zooids of the type colony (Siuiter 1909) have 12 rows of 8 to 10 stigmata. The gut forms a simple loop, the stomach wall is smooth, and there is a long posterior abdomen.

Remarks

The present specimen agrees with the type in having circular depressions on the surface with
branchial apertures around the margin of each depression, protruding cloacal apertures, and no sand either embedded or adhering to the surface. The eireular surface depression is characteristic. Although circular systems with a large circular cloacal cavities surrounded by zooids occur in other specses of Synoicum, the well-spaced and depressed circles of the present species are unusual.
The horizontal stomach folds that characterised the genus Aropogaster (to which Sluiter assigned this species), are artefacts that occur in species with large, smooth stomachs and Aropogaster is here proposed as a junior synonym of Synoicum.

Genus Morchellium Giard, 1872

Type species: Amaroucium argus Milne Edwards. 1842.

The known species bave a relatively long oesophagus A vertical, barrel-shaped stomach halfway down the abdomen is smooth or bas mulberry-like swellings in the stomach wall. Gonads are in the posterior abdomen with the ovary anterior to the serially arranged testis follicles.

Rows of stigmata are numerous. The atrial aperture is wide and open, often forming a protuberant siphon with an enlarged uppper rim. Neither the atrial lip nor the sphincter muscle are as well developed as they are in Aplidium and Polyclimum. The posterior abdomen is narrow and continuous with the ahdomen, there being no constriction between them.
The number of rows of stigmata are in the range known for other genera of the Polyclinidae. However the number per row (20 to 30) generally exceeds that of all other genera of this family, being almost as numernus as in Polycitoridac and Sigillina spp. The number of stigmata per row in Protopolyclinidae, and in some Ritterella spp.. are of this order. In Euherdnaanudac and Placentelidae they are more, and in Pseudodistomidae less numerous.
Although they are not present in the type species, the Australian species of this genus have parastigmatic vessels in the branchial sac. A few species of Aplidium - e.g. A. coeruleum (Sluiter, 1906) - and Synoicum ctopogaster also have parastigmatic vcssels (see Koul 1969) and so do certain Protopolyclinidac (Monnlorus spp., Condomintum) and certain Ritterella spp. (see above)

FIG. 57: Synoicum rropicum (QM GH5056) - a, parl of colony; b, circular sysuems with prouberant branchial apertures surrounding a larger, central common cloacal aperlure, cach depressed into the surface. Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, 2 \mathrm{~mm}$.
as well as holozoid genera Distaplia, Sycozoa and Hypsistozoa, Thus no profound phylogenetic significance can be attached to the presenec of these vessels in Morchellium species, Parastigmatic vessels hold in place the long, parallel interstigmatic bars that occur in most species with particularly long, narrow stgmata. These generally occur when there are few rows of stigmata relative to the size of the branchial sac. Probably the presence of parastigmatic vessels, preventing dis-

FIG. 58: Morchellium albidum n.sp. (holotype QM GH5582) - a. part of upper surface showing zooid systems:' h, zooid, with detached posierior abdumen showing ventral muscle band. Scales; a, 4 mm ; b, 0.5 mm .
tortion of the stigmata, maintaining the dimensions of their apertures and the effective operation of the cillia lining them, is a convergent character in the taxa referred to above.

The transverse thoracic muscles of the Australian species M. parnosum $\mathrm{n} . \mathrm{sp}$. are unique in the Polyclinidae, although they are known in Sigillina (Hnlozoidae), Polycitoridae (see Kót 1990) and some Ritterellidae (sce above). 'The pigment spots in each of the branchial lobes (as in the Diazonidae and Euherdinania spp.) are also unsual. Neither of these characters oecurs in M. albidum n.sp. Thus, they do not seem to be generie characters as the genus is currently defined. Nor do they occur in Symoicum.

Morchellium argus (lype species) has 4 symmetrically arranged unusual pigment spots around the apertures (Berrill 1950), but these are not homologous with the diazonid-like pigment spots of M. pannosum n.sp.

The large atrial aperture, and barrel-shaped stomach without longitudinal folds found in both Australian species are similar in eertain Synoicum spp. from which Morchellium is distinguished only by its 8 branchial lobes.
The type species is from the English Channel and the west coast of Britain, Ireland and France.
The species discussed below are the only 2 of this genus described from Australia. They differ from one another principally in their colonics, M. pornnosum n.s.p. having sandy lobes, each with a single system, and M. albidum n.sp. having numerous circular systems in cach cushion-like colony.

Morcleellium partitionis (Monniot. 1987) from New Calcdonia, the only species of thus genus previously recorded from the tropical western Pacilic, is divided into sandy claviform lobes and is 2 cm high. The external test is thickly enerusted with sand. Its colony form is similar to that of M. pannosum n.sp., and it has a simtlar number of rows of stigmata (13 to 14) and a similar number of stigmata per row (18). However ats lack of parastigmatic vessels and its mulburry-like stornach distinguish it.

Morchellium alhidum n.sp.

(Fig. 58)

DISTRIBUTION

TYpe Lecality: South Australial (West Bay, Wedge I., southern Spencer Gulf, Farthwalleh site 2, coll. A. Buther 16.2.88 QM GH558\%).
Further Records: None.

DESCRIPTION

EXTERNAL APPEARANCE: The colony is a large, oval bolster 4 cm long and 3 cm wide. Zooids are arranged in crowded, circular systems of up to 12, with large sessile common eloacal apertures in the centre of each. The test is firm and transparent and the zooids, seen clearly from the surface, are translucent-white in preservative. An opaque white deposit is in the surface test between the systems.
Internal Structure: Zooids are large and robust. However, the thorax and abdomen together are as little as 1.4 mm long when contracted, The posterior abdomen is longer. The rim of the branchial aperture has 8 conspicuous rounded lobes. The atrial aperture protrudes from the dorsal surface, and its anterior rim is sometimes produced into a strap-like tongue, with 3 pointed terminal lobes. In other specimens the atrial lip is shorter and broader, the 3 terminal lobes being more conspicuous than the tongue itself. A median dorsal papilla is present behind the aperture. The thorax has about 12 longitudinal muscles which form a wide band along the ventral border of the abdomen and posterior abdomen. When contracted this ventral band draws the posterior abdomen up alongside the abdomen.

Stigmata are in about 12 rows of probably up to 12, but the thorax is too contracted to allow accurate counts to be made. Each row of stigmata is crossed by a parastigmatic vessel.
The stomach is voluminous, and collapsed into irtegular, more or less horizontal folds. The pasrerior abdomen is about the same length as the rest of the zooid. It contains a double series of male follicles and an ovary anterior to these.

Remarks

The zooids of this species resemble those of Morchellium pannosum n.sp., as well as Synoicum atopogaster and S. concavitum. The naked bolster-like colonies differ from all these except the last, which, however, has firmer test, less crowded systems, and lacks parastigmatic vessels. The present species also has fewer rows of stigmata, and fewer per row than Synoicum atopogaster or Morchellium pannosum n.sp.

Morchellium pannosum n.sp.
(Fig, 59)

Distribution

Type Locality: Victoria (Port Phillip Heads, 18 m , fast current, coll. J. Watson 10.9.77, holotype QM G12722).

The species is said to be common off Port Phillip Heads.

DESCRIPTION

EXTERNAL APPEARANCE: 'The newly recorded specimen is an irregular mass of sandy test, up to 3 cm high, with the upper half of the colony divided into flattened to cylindrical lobes about 1 cm in diameter.

FIG. 59. Morchellium pannosum n.sp. (holotype QM G12722) - a, part of colony; \mathbf{b}, whole zooid; \mathbf{c}, anterior part of zooid showing atrial lip, arrial aperture, branchial aperture and tentacles, and position of neural complex. Scales: a, 5 mm ; b, 1 mm ; c. 0.5 mm .

A bare area with a large usually long, narrow opening in the centre is on the upper surface of each of the lobes, which contain single, or occasionally 2 cloacal systems. The cloacal cavities are relatively shallow.
The test is very soft, jelly-like, Dlaccid and translucent. Internally, sand is present in the base of the colony, but not elsewhere. The living zooids are reported to have been mauve.

Internal structure: The zooids are tobust. About 20 strong longitudinal muscle bands on the thorax extend along on each side of the ventral line of the abdomen and posterior abdomen in 2 wide bands. On the thorax there also appears to be a layer of transverse muscle fibres over the lengitudinal thoracic bands. In these contracted zooids (about 6 mm long), the abdomen is shorter than the fhorax, which is about the same length as the posterior abdomen. The latter curves ventrally as a result of the strong ventral longitudinal bands.

The rim of the branchial aperture appears to have 8 very shallow lobes in which there are faded pigment spots, although in some contracted specimens the rim looks puckered and gathered rather than lobed. A fleshy tridentate lip extends out from the upper rim of the atrial aperture. There are about 16 branchial tentacles of about 3 size groups, each group in a circle at slightly different levels in the base of the branchial siphon, About 15 rows each of about 20 long stigmata are folded along a parastigmatic vessel. The stomach is large, smooth-walled, and has irregular transverse folds that probably result from its collapse, The duodenum is moderately long, and a postefior stomach is in the bend of the gut loop. The voluminous rectum extends halfway up the thorax, A double row of male follicles are in the middle of the posterior abdomen.

REMARKS

In addition to the number of branchial lobes, the species distinctive characters are its fleshy body wall, strong (including transverse) muscles, roomy, transversely folded stomach, parastigmatic vessels, and distinctive lobed colony with flaccid test and large naked eloacal apertures.

The transversely folded stomach is similar to that of Synoicumt atopogaster and S. tropicum (Sluiter, 1909). It was previously thought to be characteristic of the genus Atopogatier ($<$ Synoicum).

Zooids resemble those of Synoicum atopogaster Kott, 1963 which has a similar number of stigmata, parastigmatic vessels and longitudinal
muscles that draw the posterior abdomen up alongside the abdomen. The present species is distinguished by its 8 branchial lobes and their associated pigment spors, transverse thoracic muscles and single cloacal system per lobe.

Genus Aplidium Savigny, 1816

Type species: Aplidium lofnatuan Savigny, 1816.

Zooids usually are small and thread-like with it relatively, narrow thorax and gonads in a posterior abdomen that is continuous with (rather than constricted off from) the abdomen. There are 6 or sometimes 8 branchial lobes. The atrial tongue is relatively small and rises from the anterior rim of the opening or from the body wall anterior to it. The atrial cavity also is relatively small. Longitudinal muscles extend the length of the thorax and continue onto the abdomen and posterior abdomen. Transverse muscles are in the transverse branchial vessels, joining with the longitudinal muscles in the parietal body wall through atrial connectives. The gut loop is vertical with a vertical rather than curved oesophagus and a vertical barrel-shaped stomach with parallel longiludinal folds in its wall. In Aplidium, Iike Synoicum, hut urlike Polyclinum, Aplidiopsis, and other families of Aplousobranchia with a short abdomen, the post-duodenal or proximal part of the mid-intestine - between the duodenum and posterior stomach - has more or less the same diameter as the duodenum rather than being narrower. A short distal section of mid-intestine lies between the oval posterior stomach (which usually is in the bend of the gut-loop) and the rectum. Often there are small pockets (caeca) each side of the proximal end of the rectum, and these form a rectal valve, The anus opens one third to half way up the atrial cavity.
Larvac are small, the trunk usually less than 1 mm and most often less than 0.8 mm . Three small, shallow adbesive organs on long slender stalks are present in the anterior mid-line. Median and Lateral ectodermal ampullae sometimes are present anteriorly, and usually there are ectodermal vesicles at the anterior end of the trunk. These are 2, 3 or more deep in a wide band, or in a single series, forming an anc along each side of the median adhesive organs. Sometimes they also occur in the median line between the adhesive organs (Fig -60). The vesicles separate from, or sometimes remain directly attached to the ectodem by, fine, sometimes branched, stalks. This

[^5]constitutes a distinction from Polychnum in which the only vesieles are those that branch off long strands of ectoderm which trail back through the larval test, one on each side of the mid-dorsal and mid-ventral lines and form postero-ventral and antero-dorsal patches of vesicles. These patches of vesicles occasionally also occur in Aplidium, but are seldom the only ones present. As in Polyclinum, the larval ocellus and otolith in Aplidium are well developed.

Colonies often are large, but appear to be well integrated, with zooids organised into cloacal systems and with an external morphology of the colony that enhances its interactions with the cxternal environment. Thus, branchial openings may be protected in depressed parts of the surface test, at the base of ridges or swellings of the surface test (e.g. A. caelestis, A. crateriferion). Cloacal apertures usually are elevated above the colony on conical prominences (Kott 1989). The test of Aplidium is gelatinous, but often is relatively firm, and sometimes is further strengthened by dense inclusions of embedded sand. Many species appear to sort the sand embedded in the test, large sand particles being found in the base and margins of the colony while smaller particles are around the branchial and cloacal apertures, where the test could be expected to be more nexible.

The cloacal cavities generally ane shallow, with only a thin layer of surface test over them. Atrial apertures always are at the anterior end of the dorsal surface, and variations in their position usually are a result of contraction of body musculature. Deeper cloacal cavities sometimes develop, and the atrial opening into the base of the cloacal cavity with the atrial lip inserted above it is accommodated by the separation of the atrial lip from the aperture. Thicker surface test is accommodated by a long branchial siphon (e,g, A. crateriferum).

The genus Sidnyum Savigny, 1816 (type species Sidryum turbinatum Savigny, 1816) is distinguished from Aplidium only by the 8 -lobed (rather than 6 -lobed) branchial apertures. The zooids form circular systems which open on the upper surface of soft, cushion-shaped or lobed colonies with translucent lest, and with or without encrusting sand. The best known species of this genus are the type and the related S. elegans (see Berrill 1950), which both are common in some Enropean locations, In addition to the 2 related European species, the known species with usually (but not always) 8 branchial lobes are:

Syoicum appendiculawin Michaelsen, 1923 from the Azores. Atthough assigned to Sidnyum by Monntiot (1974), the species with its deeply curved oesophagus bilaterally symmetrical stomach with furrows: (rather than folds), seems appropriately placed in the genus Synoicum.
Sidnyum pentatrema Monnial 1972 from Bermuda and Guadaloupe (see Monriot 1983) appears to be an Apliditim species in which the number of branchial lobes varies from 6 to 9, atthough 8 is the number which occars most often (Monmiot 1972. 1983). These lobes are not equal in size, and probably several have subdivided to produce the higher number, which aecordingly cannot be said to represent a reliable plesiomorphic character indicating generic status for the taxom.

Sidnysm pentatrema: Monnior and Mosniot, 1987, known only from 2 small sand covered lobes lrom French Polynesia probably is convergent tather than conspecilie with the Azores species.

Apuidiam mernocensis (Brewin, 1956) from Chalham 1. New Zealand has characters in common with both S pentarrema and S, appendiculatum. Monnint (1972) concluded that S appendiculatum from the Azores is distinct from A. memooensis, but the retationships between the latter and the Tahitian S, penfatrema. Monniol and Monniot, 1987 and A mernonensis: Monniot, 1987 from New Caledonia are not clear (see A. filiforme n, sp, below).
Aplidium amorphatum Kott, 1963 and A. protertans (Herdman, 1899) have (see below) 8 branchial lobes, Their other characters (inchuding the stomach folds) conform with the genus Aplidium.

Sidnyum indicum Renganathan and Monniot, 1984, a massive gelatinous colony from the Indian Ocean, has thread-like zooids that have the usual characteristics ol" Aplidium including a folded stomach (see A. prosectans, below)

Thus, of the 8 species that are possible candidates for the genus Sidnyum, 3-S, pentatrema Monniot, 1972; S. pentatrema: Monniot and Monniot, 1987; and A. mernooensis (Brewin, 1956) - with 5 rows of stigmata and 5 stomach folds, probably are the result of convergent evoLution. The number of branchial lobes in at least one of these species is unstable. The species appear at least as closely related to species of Aplidium as to one another. Of the other 5 known species, the 2 closely related and sympatric European ones do not seem to have closer relationships with the Australian A. amorphatum and A. protectans, and the Indian Ocean A indicum than with other Aplidium species.
Further, in the diverse genus Aplidium, both adult and larval morphological differences betwben species and groups of species appear to
transcend (in evolutionary terms) the few differences between Sidnyum and Aplidium. Accordingly, in this work the genus Sidnywm is considered a synomym of Aplidium.
Aplidium has a close relationship with Synoicum. The difference between them disappears when, in some Aplidium species, the stomach wall is distended and the 5 folds flatten out. Further the larvae are similar, and it is probable that these two polyclinid genera are closely related phylogenetically.
Resolution of the taxonomy, and identification of species of the genus Aplidium has been, and continues to be, a problem. Owing to post-mortem changes and other artefacts of fixation and preservation, the reported appearance of living specimens is often difficult to reconcile with their changed appearance in prescrvativc. In the preserved specimens, systems often are obscured by sand, and colours oxidise or are lost altogether. Zooids, already small and convergent, contract and withdraw from the surface, thus obscuring both their morphology and their arrangement in opaque and often distorted colonics. This confusion is compounded by a degree of plasticity in the shape of colonies which grow to accommodate a variety of substrates and conditions. Further the number of specimens available for examination does not always include a range of age groups or matcrial from a variety of populations so that intraspecific variation is often not known, or has not been recognised. Difficulties also exist in finding reliable taxonomic characters in these small, simplified zooids, and in their crowded colonies.
The numbcr of rows of stigmata, stomach folds, stigmata per row, and the configuration of the atrial aperture and lip, are important characters for species identification. Also of significance are characters of the colonies such as the distribution of pigment, consistency of the test, distribution and nature of test inclusions, form of the systems, shape of the colony and the presence or absence of a stalk. Usually of only limited significance at the species level are the relative lengths of different parts of the zooid (especially the posterior abdomen), the number of longitudinal muscle bands and the number and arrangement of testis follicles, which either are affected by the flexibility and contractability of the zooids, or by variations in form that occur with growth and sexual maturity.
In identifying species of this genus, particular care needs to be paid to the counting of stomach folds. The whole thickness of the stomach wall is
pleated, and accordingly folds are internal as well as external. Internal pleats seen through the wall and counted with the external ones may explain the high intraspecific variation in the number of folds sometimes recorded. A transverse section of the stomach enables accurate counts to be made. The number of rows of stigmata is obscured when a part or the whole of the branchial sac is contracted. Inaccurate counts of the number of rows and the number per row occur when, in contracted sacs, stigmata are folded, and the interstigmatic bars and the perforations are crowded together. Fully relaxed branchial sacs are desirable for accurate determination of their structure, and dissection to expose the stigmata is essential, as shadows scen through the contracted body wall are not a reliable way to count the rows.

Nishikawa (1990) points out that the genus Aplidium is one of the largest in the Ascidiacea. Aplidium species abound in temperate as well as tropical seas. Because of the difficulties in resolving the taxonomy of species in this genus some of the approximately 200 recorded may be invalid. Others have been lumped together, more critical examination showing that many previously considered conspecific taxa are actually distinct from one another.

Most of the previous works on the Aplidium fauna of Australia are based on relatively small collections from limited areas, viz. from New South Wales (Herdman 1899), northwestern Australia (Hartmeyer 1919, Millar 1963), south-western Australia (Michaelsen 1930), Port Phillip Bay (Millar 1966), eastern and north-eastern Australia (Herdman 1886, Herdman and Riddell 1913, Kott 1966, 1972c), South Australia (Kott 1972a, b, 1975 and 1976). Kott (1963) dealt with Austra-lia-wide collections. Sluiter (1909) in his report on the Siboga collection encountered only 5 species of Aplidium of which 4 occur in Australia. Only 25 species of Aplidium spp. have previously been reported from Australia.

The number of specimens available for examination in the present study has made it possible to more accurately determine species parameters and resolve synonymy. The identity of most of the 16 previously known indigenous Australian species and the 4 recorded also from the Western Pacific has been confirmed, however the 2 species said to be conspecific with species recorded from New Zealand, 3 from South Africa, and a pantropical species (A. lobatuun), were wrongly assigned. No Aplidium species has been found to have a range from Australia to either South Africa or New Zealand, and the number of apparently
indigenous Australian species has been significantly increased as a result of the present review.

Aplidium, with 46 known species, ineluding a relatively high indigenous component, now recorded from Australia, is one of the most diverse genera of the Ascidiacea in these waters (Tables 7-9).
Key to species of Aplidium recordedfrom Australia

1. Stomach folds more than 8 2
Stomach folds not more than 8 25
2. Cloacal apertures few and terminal or central; parallel longitudinal or radial cloacal canals 3Cloacal apertures numerous and scattered overthe colony surface; no long, parallel longitu-dinal or radial cloacal canals9
3. Colonies hat-topped sandy lobes adhering toone another
\qquad A. congregatum n.sp.
Colonies not flat-lopped sandy lobes adheringto one another4
4. Colony with thin, leathery stalk. A. australiense Colony without thin leathery stalk 5
5. Stomach folds less than 20 6
Stomach folds more than 20 7
6. Stomach folds 10

\qquad
A. brevilarvacium Stomach folds more than 10 A. pan'un
7. Colony scssile or top-shaped, without a stalk...
A. allarium
Colony not scssile or top-shaped, with a stalk... 8
8. Head of colony with sand externally; larvaltrunk with epidermal vesiclesA. geminatum n.sp.
Head of colony without sand externally: larvaltrunk withoul epidermal vesicles

\qquad
A. inflorescens n.sp.
9. Stigmata in 5 rows 10
Stigmata in more than 5 rows 11
10. Alrial aperture with a lip.. A. miniscuhum n.sp. Atrial aperture without a lip....... A. depressum
11. Zooids in long conspicuously branching dou- ble-row systems 12
Zooids not in long conspicuously branching double-row systems 14
12. Sand emhedded throughout A. Elatum
Sand not cmbedded throughout 13
13. Branchial sphon surrounded by wide band of
white, opaque eclls; larvac with single scries
of epidermal vesicles each side of anterior
mid-line
A. multiplicatum
Branchial siphon not surrounded by wide band
of white, opaque cells; larvae with multiple
series of epidermal vesicles each side of ante
rior mid-line
A. opacum
14. Stomach folds not more than 15 15
Stomach folds more than 15 17
15. Sand embedded in the test 16
Sand not cmbedded in the test
A. fluorescum n.sp.
16. Sand embedded in surface laycr of test; zooidsin conspicuous circular systems A. jackeroniSand embedded in basal layer of test: zooids notin conspicuous circular systems
.17. Stigmata more than 20 per row; brood pouchpresentA. uteste
Stigmata less than 20 per row; brood pouch notpresent18
18. Stigmata in more than 12 rows 19
Stigmata in 12 fows or fewer 21
19. Stomach folds 18 ; stigmata not more than 8per row
\qquadStomach folds 20 or more; stigmata more than8 perrow 20
20. Stomach folds oblique
\qquad
Stomach folds not obliqueA. gastrolineatum n.sp.
\qquad
A. robustum n.sp.
21. Siomach folds 30, oblique
\qquad........................ A. multilineatum n.sp.
Stomach folds less than 30, not oblique 22
22. Systemscircular 23
Systems not circular A. rosarmm n.sp.
23. Sand on upper surface of colony

\qquad 24Sand not on upper surface of colony
24. Stigmata more than 10 per row... A. lodharn.sp. Stigmata not more than 10 per row

\qquadA. arnatum n.sp.
25. Atrial lip separate from rim of aperture 26
Atrial lip not separate from rim of aperture 35
26. Colonies undivided, upright and regular 27
Colonies not undivided, upright and regula26
27. Colony sandy externally
\qquad A. magnilanvem n.sp. Colony nut sandy externally A. coniferum
28. Systemscircular 29
Systems not circular 31
29. A single system percolony lobe ... A. dipectuntMore than a single system per colony lobe. 3030. Branchial siphon with bulging branchialsphineter
\qquad A. craterifermm
Branchial siphon without bulging branchialsphincter A. I watacralum nom. nov.
31. Cloacal systems irregular; cloacal apertures at junction of 2 or 3 canals 32
Cloacal systems regular: cloacal apertures incentre of radially converging canals 33
32. Common cloacal canals surtound circular to

\qquadpolygonal zooid-free areasA. lenticulum n.sp.
Cormmon cloacal canals do not surtound circu-lar to polygonal zooid-free areas
\qquad
A. caelestis
33. Stomach lolds 5 34
Stomach folds 8 A. griseum n.sp.
34. Stigmatain 18 rows A. clivosumn.sp.
Stigmata in 12 rows A. rubricollun
35. Stigmata in 4 or 5 rows 36
Sugmata in more than 5 rows 39
36. Colony a 3 dimensional reticulum; 8 stomach folds A. acroporum n.sp.Culony not a 3 dimensional reticulum; 5 stom-ach folds37
37. Sligmatai in 4 rows A. distaplium n.sp. Stigmata in 5 rows 38
38. Stalks long: one system per terminal branch vor.... A bacculumn.sp.Stalks not long; more than one system per ter-minal lobeA. filiformene n.sp.
39. Sand sparse or absent from intemal lest 40
Sand moderate or crowded in internal test 42
40. Branchial fobes 8 41
Branchial Jobes 6... A. parastigmaricmu n.sp.
41. Parastigmatic vessels present ... do anuorphumm Parastigmatic vessles not present
A. prutectaras
42. Colony a single system . A. paralinermum n.sp Colony not a single system 43
43. Stigmata more than 10 per row \qquad
\qquad A. macrolobummn.sp.

Stigmata less than 10 per row 44
44. Cloacal canals surtound extensive irregular patches of zooid-frce test; systems not crowded; embedded sand not erowded \qquad A. tabascumn.sp. Cloacal canals do not surround extensive irregular patches of zooid-free test; systens eniwded; embedded sand crowded 4.5
45. Clnacal canals surround small eircular zwoidfree arcas 46 Cloacal canals surround narrow zooid-Fre ridges
A. rilleri
46. Larva with median ampullae: southern Australian A. petrosumn n.sp. Larvac without median ampullac; not southern Australian A. solidun

Species recorded from waters adjacent to Australia

Aplidium cellis Monnios, 1987 has double nows of zooids around raised zooid lree areas of test as in A. rabascmm n.sp.e from which the species is distinguished by its smaller larval (less than 0.6 mm trank) and the sand which is said to completely encrust the surface, albeit it is less crowded over the cloacal canals. Although the eolony resembles A. leuticulum n.sp. the zoouds dilfer, having the atrial lip from the upper rim of the opening, similar to the zooids of A. rifteri (> A. lobatum: Monniot, 1987). The species may be conspecifie with A. loboum Savigny (see below).
Aplidiumflawolimeatun: Monniot 1987, from the Coral Sea, has zooids (with brond pouch, large thorax and short posterior abdomen), and possibly also the larvae (with epidermal vesicles around cach adhesive organ altached to the epidermis by narrow stalks) like those of \AA. alhariun. Aplidimun alfarium has only a limited number of systems in each colony, each consisting of double rows of zooids converging to central or icrminal cloacal apertures. The Coral Sea specimen has circular systems and a brood jouch like A. utcute. However, the latter species has more numerous lateral vesicles in the larval trunk.
Aplidiun lubahm Savigny. 1816 from the Gulf of Suc\%, later (as A. africanmm Sluiter, 1905) reported from the Gulf of Aden, is said to be imegularly lobed but small (5 to 6 mm thick), with yellowish white zooids in lines amongst the sand embedded in the transparent test. The upper surface is divided into flat-topped oval cushions which have deep furrows surrounding them. The cloaeal canals into which the zooids open are in these furrows. Sand does not
adhere externally, stigmata are in 9 or 10 rows of about 12 , the trifid atrial lip is part of the anterior rim of the aperture, The posterior abdomen is short, the male and female gonads are not present in the same zooid at the same time and the larval trunk is 0.5 mm long (Michaelsen 1920). In his review of the species, Michaelsen added records from the Mediterranean (through the synonymy of A. tremuium Savigny, 1816), and suggested a range extending to Malaysia and Indonesia through synonymy with Aplidium tremulum: Sluiter, 1909. However, this requires confirmation as most assignations from the western Pacific by Tokioka (1967), Nishikawa (1984a), Monniot (1987) and Monniot and Monniot (1987) appear to be synonyms of A. ritteri (see below). Aplidium lobalum: Kott, 1963 is conspecific with A. macrolobatum n.sp. Aplidium tabascum n.sp. and A. cellix Monniot, 1987, with smaller lobes on the apertures, and elevated cushions surrounded by depressions into which the zooids open, have both colony and zooids like A. lobatum from Suez. Particularly A. cellis, with its embedded sand and small larva, is indistinguishable.
The small specimens from the Marianas (A. aff. lobatum: Tokioka, 1967), wilh the atrial lip separate from the aperture, is not this species. It is similar to A. caelestis or A. nadaense Nishikawa from Japan, Avlantic specimens assigned to A. Iobatum (see Ven Name, 1945) have fewer rows of stigmata than the types, the colonies are different, and they probably are not conspecific with the Red Sea specimens. Their similarity could well be the result of convergence.
Aplidium maru Monniot and Monniot, 1987, from French Polynesia, has a larva with median ampullae and, on each side, a band of lateral epidermal vesicles at the anterior end of the trunk (see Fig. 60). There is no other species in the group with similar larvac which also has circular to oval systems of zooids arranged around a protuberant cloacal aperture, 5 stomach folds and an atrial lip separate from the opening.
Aplidium mernooensis (Brewin 1956) from the subantarctic Chatham 1., New Zealand (see also Millar 1982) is reported from the tropical New Caledonian waters by a single colony (Monniot 1987). The colony has sand externally but not internally. Its upper surface is lobed, each lobe containing a single circular system. Zooids have red thoraces, with 8 branchial lobes, 5 stomach folds and 5 rows of stigmata. The occurrence of this species in a tropical location is surprising and the identity of the New Caledonian specimen requires confirmation, especially in view of the possibility of convergence in specres with zooids as small as these, The New Zealand specimens have almost twice as many stigmata as A. filiforme n.sp. (see below). The larvae of both the Chatham $V_{\text {. }}$ and New Caledonian specimens are Jarger than Afiliforme n.sp, but they are otherwise all similar to one another.

Aplidium muliipapillarum Millar, 1975 from Hong Kong and New Caledonia (Monniot 1987) is characterised primarily by its laryae with 5 adhesive organs.
Aplidium noduense (Nishikawa, 1980), a species protably indigenous to Japan has the atrial lip separate from the aperiure, 13 to 15 tows of up 108 stigmata, and 5 stomach folds. The colony is smooth-surfaced and the systems are not as conspicuous as they are in A. catelestis. Monniot and Monniot (1987) and Mooniot (1987) assigned specimens, from French Polynesia and New Caledonia respectively, to this species. Aplidium nadaense: Monniot, 1987 from New Caledonia has 14 to 16 rows of stigmata, but branchial apertures are in furrows in the surface, between small polygonal areas, resembling A. solidum, which, however, does nol have the atrial lip scparated front the aperture, Aplidumi naduense: Montriol and Monniot, 1987 has a longer, narrower zooid but fewer rows of stigmata than the type. Neither the number of stigmata per row nor the form of the systems is reported. The small larva and other foatures of the zooid are similar to A. lobatum, but the long narrow posterior abdomen is not. Probably ncither A. nadaense: Monniol 1987 not A. nadaense: Morinint and Monniot 1987 are conspecific either with the Japanese species or any known Austratian ones.

Aplidiam zowo Monniot and Monniot, 1987 Irom French Polynesid resembles Aplidiam ritteri in its long, winding systems, atrial lip from the upper border of the apertures, 10 rows of aboul 6 stigmata, 5 stomach folds, short posterior abdomen containing gonads of only one sex at a time, and a larva withour median vesicles or ampullac and a band of lateral vesicles. It is distinguished only by the absence of embedded sand usually associated with A, ritteri, the band of lateral vesicles is not as wide, and the larval trumk (0.7 mm long) is longer than that of A. ritteri.

Aplidium acroporum n,sp.
 (Fig, 61. Plate 10a,b)

DISTRIBUTION

TYMI LOCAllTY: South Australia (The Gipp, near Thistle I. Spencer Gulf, coll. S, Shepherd 8.4.87, holatype SAM E2554 QM GHI4 69; Horseshoe Reel near Kingston, $36^{\circ} 35.0^{\prime} \mathrm{E}$, flat rock platform, small overhang, sand patches 20 m , coll, R. McCauley 17.2 .89 , paralype QM GH5443; Kangaroo I, Cape D'Estaing. Emu Bay north of reef, $35^{\circ} 34.3^{\prime} \mathrm{S} 137^{\circ} 30.2^{\prime} \mathrm{E}$ brown algae covered rocks merging to sand and sea grass 12 m , coll. AlMS Bioactivity Group 30.189, paratype QM GHS431.
Furtifir Records: None.

DESCRIPTION

External Aprearance: 'The colony forms a 3-dimensional reticulum of hard, rigid, sandy,
TABLE 7. Summary of characters of species of Aplidium recorded from Australia
Group A: species with the atrial lip not separated from the opening; and with more than 5 stomach folds

Species	Biogeographic Description ${ }^{1}$	Range anticlockwise around Australia	Stomach folds	Systems: form; number	Stigmata: no. rows;no./row	Posterior abdomen	Colony	Embedded sand	Larvae: no. incubated; median trunk length (mm)	Other
A. altarium	WP,tr	Mackay to Cockbum Sd	25-30	radial;one	9-10;25	short	upright cushions	none	3;1.0	
A. australiense	A,te	Recherche Arch. to Shoreham	16	parallel rows; numerous	15;15	long	stalked	none	1;1.5	
A. geminatum n .sp.	A,te	Gt Australian Bight to Westem Port	20-23	$\begin{aligned} & \text { parallel rows; } \\ & 1 \text { to } 3 \end{aligned}$	15;10-12	"	"	external only	3;0.95	
A. brevilarvacum	A,te	Cockbum Sd to Gt Australian Bight	10	"	14;10	"	"	throughout	1;0.6	
A. inflorescens n.sp.	A,te	Spencer Gulf to Westem Port	20	"	15;14-15	"	"	stalk only	4;0.9	
A. parvum	A.te	Albany to Bass Strait	18	$"$	12;8	"	"	"	3;0.8	
A. congregatum n.sp.	A,tr	Moreton Bay	12	radial; numerous	11;12	"	upright flat-topped	throughout	6;0.5	
A. rosarium n .sp.	A,tr	Capricom Gp	20	"	12;12	short	cushion	basally	3;0.6	
A. elatum	A,te	Gt Australian Bight	15	branching; numerous	8;8	"	upright lamellae	throughout	?;?	
A. multiplicatum	WP,tr,te	Cockbum Sd to far northem Gt Barrier Reef	22	"	9-11;14-20	"	sheet-like to irregular fleshy mass	none	2-7;0.9	surface even
A. opacum	A,te	Cockbum Sd to Westem Port	20	"	12;12	long	"	$"$	1;0.7	"

${ }^{1}$ A, indigenous; WP, Westem Pacific; tr, tropical; te, temperate.
TABLE 7. Summary of characters of species of Aplidium recorded from Australia (Group A, Cont.)

Species	Biogeographic Description ${ }^{1}$	Range anticlockwise around Australia	Stomach folds	Systems: form; number	Stigmata: no. rows;no./row	Posterior abdomen	Colony	Embedded sand	Larvae: no. incubated; median trunk length (mm)	Other
A. lodix n.sp.	A.te	Spencer Gulf to Western Port	25	circular; numerous	10;numerous	long	sheetlike	none	6;0.7	surface eyen
A. robustum n.sp.	A,te	Albany to Tasmania	20	"	14-16;12	"	spherical to conical cushions	"	3;1.06	"
A. multilineatum n-sp.	A,te	Cockburn Sd to Tasmania	30	"	10;16	"	circular cushion	basally	2;0.9	"
A. gastrolineatum n.sp.	A.te	Gt Australian Bight to Pearson 1.	24	-	16;14	"	"	extemal only	?;0.8	ridges surround systems
A. gelasinum n.sp.	A,tr	Northern Great Bartier Reef	16-18	"		16;8	"	"	none	?;? "
A. jacksoni	A.te	Port Jackson	12	"	12;16	"	"	throughout	?;?	surface even
A. ornatum n.sp.	A,tr	SE Qld	25	"	12;10	"	upright flat-topped	none	2;0.7	
A. incubatum n.sp.	A,te	Moreton Bay	25	*	10;15	*	plate to upright flat-topped	throughout	6;0.55	brood pouch
A. uteute	WP.tr	Heron 1. to Sarina	25-35	"	11:25	short	sheets	"	2-5;0.7	*
A. fluorescum n.sp.	A.tr	Heron I. to Lizard 1.	12-14	"	10;16	"	cushion to sheet-like	"	3;0.5	
A. triggsense	WP,te,tr	Cockburn Sd to Heron 1.	15	?	8;10	long	sheets to upright lobes	basally	2;0.6	
A. depressum	WP, ${ }^{\text {r }}$	Heron 1. to Bundaberg	11	?; numerous	5;10	short	sheets	"	3;0.35	no atrial lip
A. minisculun n.sp.	A,te	Vic.	10	circular, numerous	5;10-12	"	cushion to sheets		1;0.4	
A. acruporum n.sp.	A,te	SA	8	"	5;6-7	"	3 dimensional reticulum	throughout	2;0.4	

[^6]TABLE 8. Summary of characters of species of Aplidium recorded from Australia
Group B: species with the atrial lip separated from the opening; and usually with 5 stomach folds ${ }^{1}$

Species	Biogeographic Description ${ }^{2}$	Range anticlockwise around Australia	Systems: form; number	Stigmata: no. rows;no./row	Posterior abdomen	Colony	Embedded sand	Larvae: no. incubated; median trunk length(mm)	Other
A. lenticulum n.sp.	A,te	Cockburn Sd to Heron 1.	long curved; numerous	16-20;8	long	thick sheets	throughout	1;0.85	systems surround elevated mounds
A. caelestis	WP,tr,te	Shark Bay to Lizard I.	long straight; numerous	10-18;6-14	"	"	"	1;0.65	ridges separate systems
A. rubricollum	A.te	Gt Australian Bight to Westem Port	radial; numerous	11-12:14	"	\cdots		1;0.7	ridges surround systems
A. clivesum n.sp.	A,tr,te	Por Hedland to Heron 1.	radial; few to numerous	16-18;12	"	massive wedge or thick cushions	"	1;1.75	"
A. crateriferum	WP,tr	Heron I. to Exmouth Gulf	circular; numerous	18-21;14	"	"	*	1;2.0	"
A. Iunacratum nom. nov	A.te	Cervantes to Manning River NSW	circular; numerous	10-15:12-15	"	"	\cdots	1;2.2	"
A. directum	A,te	Cronulla to Moreton Bay	circular: one per lobe	10-13:14	"	upright lobed	"	2;0.55	
A. conijerum	A,te	Elliston Bay to Twofold Bay numerous	circular to radial:	22;8	"	upright stalked	"	1;0.65	surface even
A. magnilarvum $\mathrm{n} . \mathrm{sp}$.	A,te	Gt Austrulian Bight	$\begin{gathered} ? ; \\ \text { numerous } \end{gathered}$	21;20	"	"	"	1:2.2	"
A. griseum n.sp.	A,tr	Capricorn Group	circular to radial; 2 or 3 per lobe	13;6	"	upright	"	1:0.85	ridges surround systems

${ }^{1}$ the exception is A. griseum n.sp. with 8 or 9 stomach folds. ${ }^{2}$ A, indigenous; WP, westem Pacific; Te, temperate; tr, tropical.
TABLE 9. Summary of characters of species of Aplidium recorded from Australia
Group C: species with the atrial lip not separated from the aperture; and usually with 5 stomach folds ${ }^{1}$

Species	Biogeographic Range ${ }^{2}$	Range anticlockwise around Australia	Systems: form; number	Stigmata: no. rows;no.lrow	Posterior abdomen	Colony	Embedded sand	Larvae: no. incubated; median trunk length (mm)	Other
A. distaplium n.sp.	A.te	Spencer Gulf to Bass Strait	$\begin{gathered} ? \\ \text { numerous } \end{gathered}$	4;12	short	irregular	throughout	4;0.52	rows of stigmata paired
A. filiforme $\mathrm{n} . \mathrm{sp}$.	A.tr	Capricorn Group	circular; 4 or 5 per lobe	5;6	"	upright flat-topped	"	3;0.3-0.47	
A. bacculum n.sp.	A,te	SA	circular; one per lobe	5;6	long	stalked	"	?:?	
A. petrosum n.sp.	A.te	SA	curved; numerous	9;6	"	3-dimensional reticulum	"	3;0.8	
A. solidum n.sp.	A,tr,le	Jervis Bay to Bundaberg and Dampier Arch.	"	9-12;6	short	upright lamellae	"	2-5;0.45	
A. tabascumn.sp.	A, ir	Capricorn Gp, Cockburn Sd	"	15:8	"	sheets or cushions	patchy	2;0.7	
A. rimeri	WP.tr	Heron I.	long: numerous	11-12;7	*	"	"	3;0.55	
A. macrolobatum n.sp.	A.tr	Heron I. to Lizard 1.	circular to long; numerous	9-10:15	"	"	"	7:0.65	large lips on aperture
A. paralineatum. n.sp	A.te	Tismania	long, parallel; 2 or 3	18:12	long	irregular	throughout	?:7	
A. protectans	WP,tr	NSW to far northem Gt Barrier Reef	circular: numerous	18-24;20	*	spheres or domes	none	3;0.85	8 branchial lobes
A. amorphatum	A.te	Elliston Bay to Jervis Bay	*	15;16	"	"	*	1;1.2	8 branchial lobes; parastigmatic vessels
A. parastigmaficum n.sp	A.tr	Heron I.	*	18;12	"	"	"	??	parastigmatic vessels

${ }^{1}$ The exception is A. amorphatum with 4 stomach folds. ${ }^{2}$ A. indigenous; WP, westem Pacific; te, temperate; ts, tropical.
branching, anastomosing stalks, usually with horizontal terminal branches that lie in the one horizontal plane. The whole upper surface and the sides of each terminal branch are covered with naked, saucer-shaped circular concavities of 2 to 3 mm diameter, separated from one another by raised sandy ridges. The base of each of these concavities consists of a thin layer of test oyerlying a shallow thoracic cloacal cavity with a central, sessile cloacal aperture. In the paratype colony (QM GH5431) some of the branches of
the stalks, including the terminal ones, are often flattened vertical lamellae.
Zooids are in circular systems of about 10 around each cloacal cavity. Owing to the depressed, transparent, clear, naked test over each cloacal cavity the surface depressions appear deeper than actually they are. Sand is crowded throughout the remainder of the colony. The zooids, smaller that the sand grains, are embedded in the test between the crowded sand grains. Rigid open compartments in the test, which occur in

FIG. 61. Aplidium acroporum n.sp. - a, part of colony (paratype QM GH5443); b, surface of colony showing naked areas over cloacal cavities with branchial apertures around the margins (holotype QM GH4169); c, zooid, with embryo in atrial cavity and posterior abdomen separately (paratype QM GH5443); d, larval trunk, with large test cells (?) posteriorly (QM GH5341). Scales: a, $1 \mathrm{~cm} ; \mathrm{b}, 5 \mathrm{~mm} ; \mathrm{c}, 0.2 \mathrm{~mm}$; d, 0.1 mm .
sime aplousobranch species to accommodate the zooids, do not occur in the present species.
The maximum dimension of the available specimens is about 10 cm and they are 5 cm high. However, in no case was the entire colony taken, and it is probable that they are particularly extensive in situ. The branches toward the top of the colony have a diameter of 5 mm , but the lower branches are narrower, and the basal vertical stalks taper like roots.
internal Structure: The zooids are particulurly small, up to 2 mm long, and thread like. The thorax, abdomen and posterior abdomen are of about equal length, except in those species in which the latter is contracted. The branchial and atrial siphons are short, the former with 6 (sometimes bifid) lobes, and the latter with a single pointed lip from the upper tim of the opening. There are 5 rows of stigmata with 6 or 7 in a row. The small stomach has 8 folds. A short posterior abdomen has 4 or 5 male follicles bunched in it in specimens collected in May. One colony (QM GH5431) collected in February has mature ova in the short posterior abdomen, and 2 embryos are incubated, one at the top of the abdomen and another completely obliterating the atrial cavily.

The larval trunk is spherical, $0,4 \mathrm{~mm}$ in diameter, and the tail is wound three-quarters of the way around it. There is a large cerebral vesicle with otolith and ocellus. Epidermal vesicles are in a band about 3 vesicles deep to form a conspicuous arc on each side aromd the anterior half of the trunk. These develop from a circle of epidermis around the adhesive organs, subsequently becoming detached and scattered in the test. Large morula corpuscles are scattered in the test over each side of the posterior half of the trunk. The 3 adhesive organs are wide but shallow, with short stalks.

REMARKS

Characteristics of the present species are the small zooids and the form of the colony, with its rigid, narrow, sandy branching stalks, and surface depressions separated by raised ridges which give the colony the appearance of the corallites of an acroporid coral.
The anastomosing horizontal terminal branches of this species, with zooid systems opening on the sides and upper surface, probably fonn a mat above the sandy substrate, with the rest of the reticulum (which lacks zooid openings), buried in the substrate. Such a growth form ensures that the colony is firmly anchored, and must add consid-
erably to the consolidation and stability of the substrate.
The cloacal systems are smaller than similarly shaped ones of A. iunacratum nom, nov., from which the species is further distinguished by its 8 (rather than 5) stomach folds, 5 (rather than 9 or more) rows of stigmata and the atrial lip which is separate from the aperture in A. Iunacratum,

Aplidium altarium (Sluiter, 1909)
(Fig. 62. Plate 10c,d)
Amtarouciumt ultarium Sluiter, 1909, p.105.
Aplidium altarium: ?Millar, J963, p.695. Kott 1966, p.282. Not Michaelsen 1919, p.90. Not Millar, 1956. p. 914.

Distribution

New Records: Westem Australia (Broome, WAM 873.83 QM GH27/8; Ningaloo Barrier Reef; WAM 1029.83; Houtman's Abrolhos, WAM 79.75189 .75 $388.75763 .82754 .83837 .83 \quad 1030.83$ QM GH2 146 QM GH5557; Shark Bay. WAM 871-2.83 QM GH2 148 GH2I47 1026-8.83 209.88; Cockburn Sound, WAM 75.75 143.75). Queensland (Moreton Bay. QM GH5478-9: Capricorn Group, QM GH5307 GH5521-2 GH5558-9; Broadhurst Reef QM GH5I31: Sarina, QM G4990; Lizard I., QM GH330-1 GH5480).
Previously Recorded: Westetn Australia (7Cape Boileau - Millar 1963). Northern Territory (Darwin - AM YI396 Kott 1966), Indonesia (Sluiter, 1909),

DESCRIPTION

EXTERNAL APPEARANCE: Colonies are circular to oval cushions up to 3 cm in greatest dimension, lightly attached to bard substrates such as coral skeletons as well as weed. In life the colonies are less flattened, sometimes almost spherical or topshaped, narrowing basally. They are found either in large populations, their margins probably in contact, to form a mosaic-like covering over the substrate; or they are bunched together. In preservative most of the colonjes from Western Australia collected in 1974 to 1979 are a purple colour. Apparently the colour is progressively lost when in preservative for longer, as some from the Abrolhos collected in 1963 (WAM 754-82) are beige transparent cushions. The colour of living colonies is recorded for only one of the Western Australian specimen lots (AMP1 60 QM GH5307), which is said to have been purple and white, although photographs of it are white. It is possible that the colour notes were taken after the specimen was collected, when some oxidation
had taken place. Living colonies from the Capricorn Group were described as 'brick' coloured with white in longitudinal lines down the sides of the colony, or 'pansy purple' (Ridgeway 1886) with beige or yellowish zooids, or 'brown ball ascidians'. The white lines referred to appear to have been calcareous faecal pellets in the cloacal canals. The specimens from Lizard 1. and Myora are reported to have been 'maize yellow' (Ridgeway 1886) with a red dot each side of the apertures.
When present, the purple or brick pigment particles are crowded in the surface layer of the soft but turgid gelatinous test of the preserved colonies, becoming more sparse below the surface, and absent altogether from the basal test. Between the pigment particles, and after the pigment has faded, the test is clear and transparent. Sand is neither attached to, nor embedded in, the colony.

Usually a single, central, large, sessile and irregular common cloacal aperture is on the upper surface, and branching cloacal canals converge to it from the outer margin or the base of the upright colonies. Some colonies have up to 3 systems. Zooids, cream in preservative, are arranged in rows along each side of the cloacal canals. They are tightly enclosed in the firm test and are difficult to remove. Their large, white, atrial lips can be seen stretched out along the roof of the cloacal canals, and inserted around the rim of the cloacal apertures. White opaque vesicles in the surface test around the sides and upper surface are terminal ampullae of test vessels.
Internal Structure: The zooids are about 6 mm long when contracted, the thorax, abdomen and posterior abdomen each being about onethird of the total length. About 20 fine longitudinal muscles extend from the thorax along the

FIG, 62. Aplidium alsarium - a, colony (QM GH5307); b, zooid, with posterior abdomen separately (AM Y1396); \mathbf{c}, larva (WAM 79.75). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 1 \mathrm{~mm} ; \mathbf{c}, 0.2 \mathrm{~mm}$.
length of the zooid, and even though all of the examined zooids are contracted, the muscles are inconspicuous. The branchial siphon is short, Only a shon imperforate area is posterior to the prepharyngeal groove. The atrial tongue is of variable length, and is undivided or sometimes divided into 2 or 3 ponts. It arises from the anterior rim of the atrial aperture. The atrial aperture is a vertical slit, bounded on each side by a projecting convex lip which has mascles in its outer, convex, vertical margin. The homology of these muscles appears to be with the sphincter muscle usually found around the atrial aperture. The unusual configuration of the atrial sphincter in this species results from its component muscle bundle being drawn together by fine longitudinal muscles, one each in the middle of the anterior and posterior rims of the aperture, to form, respeclively, the anterior and posterior extremities of a vertical aperture.

As well as being long, the branchial sac is wide, with up to 25 stigmata per row. However, despite its length, there are only 9 of 10 rows of stigmata. The stigmata are long. In the contracted, preserved zooids they usually are found folded horizontally along the centre of each row. The stigmata are fusiform, pointed at each end. They are only slightly reduced in length toward the dorsal and ventral mid-lines.

The oesophagus increases in diameter anterior to the stomach to form a prestomach. The stomach is wide, reduced in diameter at the cardiac end, with some oblique fokls terminating against the suture line. It has 25 to 30 fine folds, sometimes interrupted along their length. The duodenum is wide, and the short mid-intestine nurrows abruptly to enter the oval posterior stomach in the bend of the gut loop. Short rectal casea are present at the proximal end of the ascending loop. The rectum extends half way up the branchial sac (opposite the fifth row of stigmata), but the contraction of the anterior part of the thorax can draw the anus up behind the atrial aperture. The anal opening is bounded by two large semicircular lips. The ovary is in the relatively short, stumpy posterior abdomen a short distance behind the gut loop, and 12 to 20 male follicles are clustered behind it. There is no constriction between the abdomen and the posterior abdomen

Up to 2 embryos are in a brood pouch projecting from the postero-dorsal cociner of the thorax in colonies collected in April and May from Westem Ausitalia (WAM 754.82 763.82837 .83 1030.83 871-2.83), and from the Capticorn Group in November (QM GH5307) and Decem-
ber (QM GH5559). Mature gonads are not present in colonies collected in August (WAM 1029.83). In the Darwin colonies, collected in October, up to 4 embryos are lined up in the atrial cavity, the largest a tailed larva. Specimens collected in October (QM GH5131) and November (Heron I.), May (Myora) and June (Lizard I.) have up to 3 embryos at various stages crowded into the atrial cavity, projecting dorsally from it when the thorax is contracted. These embryos distend the whole atrial cavity and are not in a posterodorsal brood pouch as they are when only onc embryo is present. Larvae are short and deep, with a trunk to 1 mm long. As they mature they become almost spherical, the trunk about 1.0 mm long with the tail wound about three-quarters of the way around it. Circles of 6 to 8 epidermal vesicles are arcynd each of the adhesive organs and these remain attached by jatrow stalks to the epidermis. About 5 epidermal vesicles are also attached to the trunk ectodermin the median line ventrally, behind the adhesive organs. The 3 median adhesive organs at the anterior end of the tronk are small and shallow. A mass of blue pigment is in the haemocoelic cavity, especially dense in the posterior homs, although these are largely obliterated as the oozooid develops. Mature larvac with a spherical truik have 4 rows of stigmata, and a relatively short yolk mass beneath the large, upright pharynx, with its vertical endostyle,

REMARKS

The branching cloacal canals of these colonies resemble some species of Polyclinum. The mosaics formed by the closely spaced colonies resemble those of Ritterella dispar, and some species of Diplosoma (see Kott 1980). Nevertheless, the zooids are characteristic of Aplidium. It is possible that these lightly attached small colonies subdivide, and move to space themselves evenly over the substrate.
The zooid, sometimes with a brood pouch, and with bunched male follicles in a short posterior abdomen and numerous stomach folds, resembles Aplidiam uteute. However, the latter species has zooids with longer, more barrel-shaped stomachs, iuranged in circular systems, and the colonies are larger and more irregular than those of the present species. Further, although laryae of A. uteute have arcs of lateral vesicles, they also have median vesicles which do not occur in the present species. Aplidium multiplicatom has branching systems and similar larvae to the present species. However, A. nuiftiplicatiom colonies are larger, softer, the pigmentation is different, thoraces are nar-
rower and systems longer and more crowded. Aplidium opacum has more crowded systems, spreading colonies, narrower thoraces, more rows of stigmata and fewer stomach folds.
A. flavolineatum: Monniot (1987) from Chesterfield Reef has 12 rows of stigmata and about 30 stomach folds. Although Monniot docs not record the number of stigmata per row the zooids are similar to the present spccies. However the colonies are sheet-like rather than being cushions or wedge-shaped lobes, the zooids are arranged in circles rather than radiating double rows, embryos are incubated in a brood pouch and larvae have median ampullae (likc A. uteute, scc below). Although the larvae have some similarities, the present species is not conspecific with the South African A. flavolineatum (see Mitlar 1962) which is sandy (rather than naked) and red (rather than a cream, ycllow, purplc or brown colour).

The most conspicuous feature of the present colonies, viz. the doublc-rows of zooids converging to the central or terminal cloacal apertures, were not observed either by Sluiter (1909) or Millar (1963) in specimens they assigned to Aplidium altarium. However, the shape of the colonies, the form of the stomach, and the short posterior abdomen without a constriction between it and the abdomen are similar in all descriptions. The large semicircular lips of the anal opening, and its unusual, retatively anterior, position are recorded by Sluiter for the type specimens, which also have an expansion in the oesophagus as in the present specimens. The 4 to 6 embryos reported to be in the atrial cavity (Sluiter 1909, Taf. V9a) are very much smaller than those in the newly recorded specimen indeed they are smaller than is known for any species of Aplidium and possibly Shuiter misinterpreted these bodies. A further discrepancy between Sluiter's account of the type and the newly recorded specimens is that he recorded only 10 stigmata per row - however there often are discrepancies of this order in Sluiter's counts of stigmata.

Reexamination of specimens from Darwin (Kott 1966) shows that the number of stigmata per row and the shape of the colonics werc recorded incorrcctly. The colonies are cushions, rather than sheet-like and the branchial sacs have the same number of stigmata as the present newly recorded ones. These Darwin colonics appcar to be conspecific with the newly recorded specimens and with the Indonesian type material (Sluiter 1909).

Specimens assigned to A. altarium from Zanzibar and Mozambique (Michaclsen 1919; Millar 1956) appear different from the present species, with more numerous stomach folds (about 40), and small karvae with only 4 large epidermal vesicles and no ampullac (see Millar 1956).

Aplidium amorphatum Kott, 1963
(Fig. 63)
Aplidium amorphatum Kott, 1963, p.101; 1975, p.6. Aplidium pseudobesum Kott, 1963, p.101.

DISTRIBUTION

New Records: Vietoria (Deal 1., QM GH ; South Gabo I., QM GH5155-6). New South Wales (Jervis Bay, QM GH5617-9).
Previously Recorded: South Australia (Elliston Bay - SAM E2581 Kott 1975). Victoria (Bass Strait - AM U3918 Kott 1963). New South Wales (Eden AM U3922 U3924 Kott 1963).

DESCRIPTION

External Appearance: Colonics are soft, gelatinous cushions, about 8 cm in diameter, almost spherical or dome-shaped. The test is translucent and the zooids can be seen through it arranged in circular systems of 9 or 10 in each circle, atthough in these preserved colonies they arc generally withdrawn from the surface and the systems are obscured. Specimens from South Gabo I. (QM GH5155-6) are described by the collector as 'red rose' ascidians.

Internal Structure: The zooids are large, the thorax and abdomen together being about 5 mm long. In relaxed condition the thorax would bc longer than the abdomen. The posterior abdomen is long, but when contracted is drawn up to the left side of the gut loop. The zooids are muscular with about 20 longitudinal bands on the thorax that extend along the ventral border of the abdomen and posterior abdomen. The branchial aperture has 8 pointed to shallow rounded lobes around the rim of the short siphon. The long, robust, tongue-like atrial lip, from the upper border of the opening, has a tridentate tip with each division of equal size. The pharynx has 15 rows of up to 16 long stigmata. Each of the rows is crossed by a parastigmatic vessel. An intermediatc dorsal languet associated with each of these parastigmatic vessels alternates with, and is the same size as, the languets on the primary transverse vessels.

The oesophagus is about one third of the length of the abdomen. The large voluminous stomach accupies the middle thind. Th has 4 shallow glandular ridges in its intemal wall. The usual duodenal and mid-intestinal regions and a pear-shaped posterior stomach are in the posterior third of the descending limb of the gut loop. A double series of testis follicles is in the posterior end of the

FIG. 63. Aplidium amorphatmm - a. colony outine (SAM E2581): b, thorax and abdomen (holotype AM U3918): c, branchial aperture (holotype AM U3918): d. outline of contracted zooid, showing posterior abdomen pulled up alongside the abdomen (QM GH5617); e, larva (SAM E2581). Scales: a, 2cm; b, $1 \mathrm{~mm}, \mathrm{c}_{\mathrm{e}}, \mathrm{e}, 0.2 \mathrm{~mm}, \mathrm{~d}, 2 \mathrm{~mm}$.
posterior abdomen and the ovary is anlerior to them.
The colony from Elliston Bay collected in February has a single, large, embryo being incubated in the arrial cavity, almost completely occluding the pharynx. The larval trunk is 1.2 mm long, and the tail is wound only halfway around it. Ectodermal vesicles are crowded in the test around the anterior part of the trunk, obscuring the 3 adhesive organs in the anterior mid-line. They consist of wide lateral bands of vesicles, and some in the median line attached by 2 or 3 long branching stalks in each interspace between the adhesive organs. The developing adult organs are at the posterior end of the long trunk.

REMARKS

The distinctuve aspects of this species are its soft, rounded colonies, large zooids in circular systems, 8 branehial lobes, parastignatic vessels, large stomach with shallow glandular ridges, and the large larva filling the atrial cavity in which it is brooded. The species has a superticial resemblance to Aplidium protectans wheh also completely lacks sand. and has a similar rounded shape, circular systems, 8 branchial lobes, large zooids, and shallow stomach folds. However, in A. protectans the test is firmer, the systems are depressed into the surface test, rows of stigmata are more numerous, parastigmatic vessels are absent, and the range is tropical.
The wide ventral muscle which draws the posterior abdomen up alongside the posterior end of the abdomen is reminiscent of the muscle band in Aplidium circumwalumn which distorts the zooid in a simular way (see Miller 1982).

Aplidium australiense Kolt. 1963
(Fig, 64)
Aplidium anstraliensis Koln, 1963, p. 111 (pant, type specimen from Shorcham).
Aplidium colelloides: Kot1 1972a, p.15; 1972b. p. 176. 1975. p. 7.

Distribution

New Records: Western Australia (Recherche Archipelago, WAM 147.75). South Australia (Eyre Peninsula. SAM E2557, Great Australian Bight, SAM E2478; Nuyts Archipelago, SAM E2472 E2476 E2558: Hutspot. QM GH1325).
Frevionsly Recorded: South Australia (Creat Australian Bight - Kolt 1972b, 1975: St. Vucent Gulf Kolt 1972a; Investigator Strait - Koll 1972b). Victoria (Shorcham - AM Y 1398 holotype Kot1 1963).

The records suggest that the species occurs only off the southem Australian coast.

DESCRIPTION

External Appearance: The colonies are long (up to 8 cm), mone or less elliptical heads to 6 cm diameter on long (to 20 cm) harrow, tough, sandy stalks narrowing to a basal holdfast of short, thick root-like branches. The test on the head is soft, gelatinous, translucent. The terminal end of the head sometimes is pointed.

In the larger preserved colonies there are 4 to 6 deep, longitudinal furrows or creases formed between deep folds of the surface of the colony. Common cloacal canals are at mid-thoracic level and extend into large cloacal spaces in the edge of the folds referred to above. Three or 4 large cloacal apertures are either sessile or on protuberant cones along the edge of the folds. Sometimes they seem to altemate from side to side of the edge of the fold. Branchial openings of zooids are on both sides of these folds, i.e, on their puter and inner surfaces, as well as in the base of the depressions between and under the folds. Branchial apertures are absent only from the edges of the folds over the large cloacal canals.
Zooids are seen to be in longitudinal rows near the top of the stalk. However, in preserved colonies the arrangement of zooids towards the middle and top of the head is obscure.

Relatively small heads (2 cm long) on long (10 cm) stalks (SAM E2558) suggest that heads may regenerate on persisting stalks, These smaller heads lack the deep creases of the larger ones, and the zooids are arranged in more or less conspicuous double rows, converging to large cloacal apertures -3 or 4 randomly distributed around the sides of the head, and 2 or 3 on the top of the head.

Internal Structure: Zooids are particularly long and thread-like, their posterior ends curving down into the stalk. The rim of the branchial apertures is divided into 6 large, rounded lobes. The atrial aperture is a small sessile opening in the middle of the dorsal border of the thorax with a small pointed languet from the upper rim of the opening. About 10 longitudinal muscle bands on the thorax extend the length of the zooid, joining into a single wide ventral band along the long posterior abdomen.

Stignata are in 15 rows with about 15 per row, although both the number of rows and the number
per row are difficult to count owing to contraction of the small zooids. Twelve to 16 deep, longitudinal folds are in the stomach wall. The number varies with the size of the zooids. Testis follicles are in a double series in the posterior end of the posterior abdomen.
One large embryo or tailed larva and sometimes also what appears to be an infertile ovum are in the posterior part of the atrial cavity in colonies collected in September (SAM E2557) and in October (Kott 1972b). Specimens collected in March (SAM E2476) have mature male gonads.
The larval trunk is 1.5 mm long. Its anterior end is obscured by a cloud of minute epidermal vesicles along each side of the base of the adhesive organs. The tail is wound three-quarters of the way around the trunk.

REMARKS

The colonies of this species, with their long, narrow, hard, sandy stalks and long gelatinous heads with small, crowded zooids and deep longiludinal creases, are distinctive.
Despite Herdman's (1886) speculation that Aplidium colelloides (Herdman, 1886) from South Africa had a short stalk, Millar (1962) established that it has a long (up to bicm), narrow, hard stalk like that of the present species and reminiscent also of the long-stalks of species of Sycozoa and Pseudodistoma. Kott (1972a,b; 1975) in assigning South Australian specimens to the South African species, ignored the fact that the former have larger colonies with external creases on the head, more numerous stomach folds, and a larval trunk twice the size of the South African specimens. The large colonies that characterise the Australian species also have more crowded zooids less conspicuously arranged in long, oval systems (Miliar 1962).
The larger colonies, deep creases, complex crowded systems as well as the long, narrow, hard stalks help to distinguish the species from A. geminatum n .sp. which has double rows of zo oids, but shori and thick stalks, less crowded zooids, more numerous stomach folds, Ionger, more conspicuous and often 3-1obed atrial tongues, and different laryae.
The type specimen of the present species from Shoreham (AM Y1398) is a head which has lost its stalk. The other specimens assigned to this species by Kolt (1963) are colonies of

FIG. 64. Aplidium aristraliense - a, whole colony (QM GH1325); b, head of large colony (SAM E2478): c, thorax and abdomen with embryos being brooded in posterior end of atrial cavity (SAM E2557); d, larva (SAM E2557). Scales: a, b, $2 \mathrm{~cm} ; \mathrm{c}, 0.5 \mathrm{~mm} ; \mathrm{d}, 0.2 \mathrm{~mm}$.

A. geminatum n.sp., to which the larva figured by Kott (1963, Fig. 25) also belongs.

Aplidium bacculum n.sp.

(Fig. 65. Plate 10e)

DISTRIBUTION

Type Locality: South Australia (Yorke Peninsula, Edithburgh, $35^{\circ} 9.7 \mathrm{~S} 137^{\circ} 47.4 \mathrm{E}, 12 \mathrm{~m}$, coll. AIMS Bioactivity Group 6.2.89, holotype QM GH 5434). Further Record: South Australia (Thorny Passage, SAM E2568).

DESCRIPTION

External Appearance: The colony is a compact mass of parallel, long (3 cm), narrow (to 5 mm) sandy stalks, that branch once or twice along their length and adhere to one another. Their terminal free ends are flattened, horizontal, and level with one another to form a more or less even platform. They have a cloacal aperture in the centre of each terminal flat tip. This opens from a shallow, circular, cloacal cavity which is surrounded by about 10 zooids. Branchial apertures open around the upper margin of the terminal flat surface, and atrial apertures open into the cloacal cavity. A single cloacal system is in each terminal branch. The specimens from Thorny Passage have the terminal test inflated over each zooid, and the central common cloacal apertures protrude slightly.

Sand is crowded over the surface of each stalk, and also is embedded throughout the internal test, but is absent from the surface over the terminal end of each lobe. The small thread-like zooids are difficult to remove from their narrow longitudinal spaces in the hard, sandy colony.

InTERNAL STRUCTURE: Zooids extend the whole length of the sandy stalk, but the thorax and abdomen are together only about 3 mm of which the abdomen is about two-thirds. The branchial aperture has 6 rounded lobes. A fleshy atrial lip, divided into 3 pointed lobes, extends from the upper border of the atrial aperture. Longitudinal muscles on the thorax are moderately strong, but they become finer as they extend back along the ventral surface of abdomen and posterior abdomen in a wide band of delicate muscles.

Stigmata are in 5 rows of about 6 stigmata per row, but these were difficult to count owing to contraction. The oesophagus is relatively long,

FIG. 65. Aplidium bacculum n.sp. (holotype QM GH5434) - a, colony; b, thorax and abdomen. Scales: a, $1 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm}$.

the small stomaeh being two-thirds of the way down the abdomen. The stomach wall has 5 deep folds. The duodenal area reduees in diameter to a short mid-intestine whieh opens into an oval posterior stomach in the descending limb of the gut loop. There is a small rectal valve at the proximal end of the rectum. Gonads are not developed in the available material.

Remarks

Superficially, the sandy stalks of this species differ from those of Ritterella spp. and Mouniotus spp. (which have no sand internally) principally in having embedded sand crowded in the internal test. Despite the long oesophagus, however, zooids are eharaeteristie of Aplidium and open into a well developed eloaeal eavity rather than directly to the exterior as in Ritterella. The form of the colony, and the long oesophagus (which probably is associated with the length of the eolony lobes), together with the small zooids with only 5 rows of stigmata, eharaeterise the speeies. Externally, the sandy lobes of the colony, especially the one from Thorny Passage with the test inflated over the anterior end of each zooid, and the protruding central cloacal aperture, resemble Synoicum stewartense Michaelsen, 1924 (see Millar 1982).

Other Aplidium species with 5 rows of stigmata viz. A. filiforme n.sp. and A. depressum lack the long stalks and long oesophagus of the present species.

Aplidium brevilarvacium Kott, 1963
(Fig. 66. Plate 10f,g)
Aplidium brevilarvacium Kott, 1963, p. 113. Aplidium digiratum Kott, 1975, p. 7.

Distribution

New Records: South Australia (Ward I., QM GH2412; Top Gallant I., QM GH953; Investigator Group, QM GH1311 GH2413). Queensland (Heron I., QM GH961).
Previously Recorded: Western Australia (Pt. Peron; Cape Naturaliste - AM U3926 syntypes A. brevilarvacium Kott, 1963). South Australia (Northern Great Australian Bight - QM G7508 AM Y1982 paratypes A. digitalum Kott, 1975).

The reeord from Heron I. is anomalous (see Remarks, below).

DESCRIPTION

External Appearance: The colonies are rounded heads (0.5 to 1.5 em in diameter) on thick
stalks, 0.5 to 6.0 em long, branching 2 or 3 times along their length, and up to about 0.5 em in diameter at the base. These sometimes arise from a basal test mass. Zooids are arranged in longitudinal rows along each side of cloacal canals that extend the length of the head, converging to 2 or 3 large, terminal eloaeal apertures. The outer surface of both head and stalk is even, without wrinkles or protuberances.

There is a layer of sand in the outer surface that may obscure the zooids and their branchial openings. Sand is present also in the internal test. The anterior ends of the zooids are perpendieular to the outer surface and posteriorly they curve down into the stalk of the colony, criss-crossing one another as they go. In life the colonies are whitc to a sandy pink colour.

Internal Structure: Zooids are robust. When contraeted the thorax and abdomen are of equal length and together about 2 mm long. About 12 very fine longitudinal muscles from the thorax run the length of the zooid. The branchial lobes are rounded. The atrial opening is sessile, with a fleshy, pointed lip from the anterior rim of the opening which sometimes is divided into 2 at the tip. The pointed dorsal languets are to the left of the mid-dorsal line, opposite the third row of stigmata. Stigmata are relatively short and oval, about 10 per row, and in 14 rows. The stomaeh, halfway down the abdomen has 10 deep longitudinal folds. The duodenum is long, and the oval posterior stomaeh is separated from the duodenum and rectum respectivcly by short lengths of proximal and distal mid-intestine. The posterior abdomen is narrow, up to lem long.

In the type specimens from Cape Naturaliste (collected in January) and the newly recorded South Australian specimens (collected in April) there is a large tailed embryo in the atrial cavity and sometimes a large (possibly non-fertile) ovum as well. The larval trunk is about 0.9 nm deep, but only about 0.6 mm long. It has an ocellus and an otolith, 3 medium stalked adhesive organs, and the tail is wound one and a half times around it. Epidermal vesicles are present along caeh side of the adhesive organs.

REMARKS

The eolonies from Heron I. appear to have only one or 2 terminal cloacal apertures, instead of the more numerous openings in the South Australian eolonies. However the zooids have the same number of rows of stigmata and stomaeh folds, and are not distinguishable from the southern or westem Australian ones. These Heron I. colonies may
represent a population at the northem extremity of the range of this otherwise temperate indigenous species.

Extemally, the colonies of this species, and particularly the specimens from Heron I. with one or 2 systems per lobe resemble Distaplia australiensis (see Kott 1990). Colonies also resemble Aplidium geminalum n.sp. which, however, has more numerous (20), fine stomach folds, appreciably larger colonies, and less branched and more wrinkled stalks.

Aplidium caelestis Monniot, 1987
(Fig. 67 Plale I la-f)

Distribution

NEW RECORDS: Western Australia (Shark Bay, WAM 883.83; Mullaloo Beach, QM GH5450; Hillary's Boat Harbour, QM GH5452). South Australia (Edithburgh. QM GH5437: Beachport. SAM E2566 E2569; Kangaroo 1., QM GH5428 GH5430). Victoria (Bass Strait QM GH5648). NSW (Norfolk 1., QM GH5783). Queensland (Capricorn Group, QM G9474 GH5594 GH5633-40 GH5647-8 GH5650-9 GH5661-2 GH5665; Lizard I., QM GH5631-2).

Previously Recorded. Westem Australia (Rotinest - AM Y1382 Kot 1963). Queensland (Heron I. AM U399! Kolt 1963). New Caledonia (Monnint, 1987). ? Marianas (Tokioka 1967).

DESCRIPTION

External Appearance: Colonies form robust, always sandy, investing sheets up to 20 cm

Aplidium caelesfis Monniot, 1987, p. 517.
Synoicum hypurgon: Kott, 1963, p. 86.
?Aplidium alf. lobalum: Tokioka, 1967. p.22.

FIG. 66. Aplidium brevilarvacium - a, b, parts of colonies (QM GH953, G7508); c, details of a zooid system, with double rows of zooids converging to a terminal cloacal cavity (QM GH961); d, thorax (QM GH2412); e, thorax and abdomen (QM GH953); \mathbf{f}, larva, showing ares of lateral vesicles and median ampullae (syntypes AM U3926). Scales: a, b, $2 \mathrm{~cm} ; \mathbf{c}, 5 \mathrm{~mm} ; \mathbf{d}, \mathbf{e}, 0.5 \mathrm{~mm} ; \mathbb{I}, 0.2 \mathrm{~mm}$.
in maximum extent and up to 1 cm thick. A row of zooids is along each side of the cloacal canals that extend between or around long, narrow arcas of zooid-free test. Large sessile common cloacal apertures are at the junction of several canals and they often are clevated by the large cavity beneath them. The surface of the colony is depressed where relatively thin, usually transparent, naked test overlies the cloacal canals. Oval granular bodies about 0.1 mm long, and some shade of brown to almost black are in the test and line the sides, base and walls of the cloacal canals, and
often are in the surface as well. The grey to brown colour of the colonics results from these bodies and the included sand. sometimes in small clumps. Both the oval bodies and the clumps of sand appear to have been interpreted as faccal pellets. Sand is embedded throughout the test except in the thin transparent surface layer over the cloacal canals. Colonies have been described as "sandy grey" or "drab, with fawn zooids". "sandy grey with ycllow zooids". 'grey encrusting ascidian'. Living zooids are yellow, or orange. The test over the cloacal canals is irridescent in

FIG. 67. Aplidium caelestis - a, colony (QM GH5437); b, thorax with embryo being incubated (QM GH5150); e, thorax and abdomen (QM GH5647); d, whole zooid (QM GH5633); e, larva (QM GH5647). Scales: a, 5mm; b, c, $0.5 \mathrm{~mm} ; \mathbf{d}, 1 \mathrm{~mm} ; \mathrm{e}, 0.1 \mathrm{~mm}$.
living specimens, A colony from Heron L (QM GH5661) had blue cells in the surface test between the rows of zooids of the living colony as in the type from New Caledonia. Prochloron is often present on the surface (see Koth et al., 1984:Aplidium sp. 1). Two colonies have red and green symbiotic cells embedded amongst the sand in the floor of the common cloacal canals. These are pink in preservative. Sand always is present in the basal half of the colony, and in the ridges between the double rows of zooids.

Internal Structure: The zooids are long and thin (thorax and abdomen together to 5 mm), but robust, with strong longitudinal muscles that extend their full length, along the ventrum of abdomen and posterior abdomen. The thorax and abdomen, of about equal length, are together about 3 mm . The branchial siphon has 6 rounded lobes and a single conspicuous bulging sphincter muscle at their base. A long prebranchial area is posterior to the tentacles. The atrial aperture, a short distance down the dorsal surface, also has a conspicuous sphincter muscle. A tobust, but not very long, pointed atrial lip, usually not divided, arises from the body wall anterior to the aperture. The atrial aperture at the level of the second or third row of stigmata opens into the sides or base of the cloacal canal.

Stigmata are in 10 to 18 rows, with 6 to 14 the maximurn number per row. Expanses of unperforated pharynx are along each side of the mid-dorsal and mid-ventral lines. The oesophagus and post-pyloric part of the gut loop are relatively long for this genus, the gut loop being about the same length as the thorax when both are extended. The small stomach, halfway down the abdomen, has 5 distinct folds, althrough these sometimes flatten and occasionally it is difficult to see traces of any folds in the stomach wall. The duodenum, mid-intestine and posteriot stomach are characteristic of the genus. Gonads are in the centre of the abdomen and consist of an irregular row of testis follicles with an anterior ovary a little distance behind the gut loop.

A single embryo with a trunk 0.65 mm long and median ampullae altemating with the adbesive organs is in the atrial cavity of specimens taken in March and August from Heron 1.

Remarks

The zooids of this species, with their wellformed branchial siphons, sphincter muscles, atrial lips separate from the apertures, and long and narrow thoraces, resemble A. crateriferum, A. griseum n.sp., A. lenticulum n.sp., A. Iunacra-
tum nom. nov, and A. clivosum insp. The long, rather straight double row systems with long canals surrounding ridges of solid sandy test, sometimes can be seen in A. ritteri, but its atrial lip is not separate from the aperture. The oval granular bodies are present also in A. lenticulum n.sp., which has cloacal canals around raised polygonal areas rather than between the long ridges of the present species. The larvae also appear to be similar to those of A. lenticulum n.sp. The type specimen of A. caelestis Monniot, 1987 from New Caledonia has the same almost smooth stomach, narrow thorax, separate atrial lip, long double rows of zooids. The test is entirely encrusted with sand as it usually is in the newly recorded specimens. Although the transparent test over the cloacal canals is not always sky-blue in living specimens as it is in the type, it sometimes is. Colour and the number of rows of stigmata appear to be variable characters in this widespread species.

Kott (1963), interpreting the oval bodies as faecal pellets, assigned specimens of this species to A. hypurgon (Michaelsen, 1924), a New Zealand temperate species.

Aplidium clivosum n.sp,

(Fig. 68. Plate 12a-1)
Aplidium pantherinum; Kott, 1963, p. 98; 1972b, p. 176.

Distribution

Type Localtur; South Australia (S.E. Beachport, 67 m , on jetly piles, coll. W. Zeidler 20.2 .89 , holotype SAM E2561; Kangaroo T, on jetty piles, coll. N. Coleman 12.3.78 AMP1 220, paratype QM G1197).
Further Records: Western Australia (Port Hedland, WAM 1020-2.83; Montebello Is, QM GHS406; Cockburn Sound WAM 869-70.83, QM GH2149; Busselton, QM GH5469; Green Pools, QM GH5629). South Australia (Topgallant It, QM GH1287 QM GH2419; Hotspot, QM GH2417; Nuyts Archipelago, SAM E2562; Eyre Peninsular, SAM E2566 E2569; Flinders 1., QM GH2305; Kangaroo L, QM G11997 GH5432 GH5433, SAM E2564; Ward 1,, Beachport, QM GHS447; West 1., QM GH2415). News South Wales (Jervis Bay AMPI 78 QM GH5628). Queensland (Heron L QM GH5569 GH5593 GH5597 GH5669-70 GH5675); Westem Australia (Rottnest to Hamelin Bay - Kott 1963). South Australia (Elliston Bay - SAM E2585 Korl 1972b).

DESCRIPTION

External Appearance: Colonies are large, to 4 cm thick and to 15 cm or more in maximum dimension. Some are of ever thickness attached by the whole of the basal surface. Others converge toward the basal attachment area, or have irregular processes that may project into the substrate or around rocks and rubble. One colony (WAM 1021.83) is upright, rather flattened and divided into 2 lobes, about 15 cm high, with systems evenly distributed over the both sides of the upright lobes.
The base and sides of the colonies have sand adhering to the surface. Sand usually is present on the zooid-free raised areas of the surface surrounding single systems, or groups of systems. The test over the systems usually is naked. Embedded sand is absent at thoracic level where zooids curve around the shallow cloacal cavities, but is present throughout the remainder of the test. Tr some colonies it can be seen projecting in from the periphery of each system as narrow wedges between the double rows of zooids.
The cloacal canals converge from the periphery of each systern, to the large central cloacal cavity. A cloacal aperture raised on a conical protuberance (up to 5 mm diameter across the base) is in the centre of each system. Zooids are arranged in double rows, one row along each side of the canals, In preserved colonies the surface is depressed over the systems, altbough it is not unusual for 3 or 4 systemis to be present in one large depression, each system with its protruding common cloacal aperture. Systems are not always circular, often being irregularly shaped, the cloacal aperture being excentric with longer canals on one side than on the other. The diameter of the systems in this species is variable, ranging from 0.5 to 1 cm , often in onc colony.

In some colonies the whole upper surface is horizontal, and depressed within a rounded marginal rim. In others there is no sharp division between the margin and a convex upper surface.
In photographs, living colonies are pink, "light wine' or bluish red, In preservative they are a translucent bluish-red. The colour is conspicuous an the upper surface over the systems and around the cloacal apertures.
Internal structure: in contracted zooids the thorax and abdomen together are from 3 tor 6 mm long, Long, thread-like posterior abdomina extend down through the crowded sand in the lower half of the colony.
About 12 fine longitudinal thoracic musctes extend posteriorly along the whole length of the
zooids. The branchial siphon is long. with a narrow, bulging sphincter muscle behind the branchial lobes. Some fine circular muscles are on the remainder of the siphon, but they do not form a sphincter. The branchial tentacles are about halfway up the branchial siphon, with a long prepharyngeal area between them and the prephiaryngeal groove. The diameter of the siphon bulges out in the vicinity of the branchial tentacles between the anterior sphincter and the prepharyngeal groove. A single, pointed atrial lip. sometimes bifid or trifid at the tip, arises from the body wall just anterior to the atrial siphon, which, depending on the state of contraction of its sphincter muscle, is either a sessile, circular opening, or is on a short, cylindrical siphon. The atrial siphon is well anterior, opposite the second row of stignata.
In the branchial sac are 16 to 18 rows of up to 12 stigmata. A wide unperforated band of pharyngeal wall is present each side of the endostyle.
The abdomen is almost as long as the thorax. The oesophagus is long and narrow. The small stomach has 5 deep folds in its wall. A long duodenum is continuous with a farrow proximal part of the mid-intestine. A small oval posterion stomach is in the distal part of the descending limb of the git loop. A short, narrow distal section of the mid-intestine is between the posterion stomach and rectum in the bend of the gut low. A distinct rectal valve is present. The anal opening is opposite the fourth most posterior row of stigmata.
A single of double series of male follicles is in the posterior part of the posterior abdomen.
A large embryo (trunk 1.5 to 2.5 mm long) is in the posterior half of the atrial cavity of specimens collected in March at Busselton (QM GH5469), and January it Kangarod I. (QM GH5432). The tail extends only to the anterior end of the tounk which has erowded hair-like ampullae obscuring the anterior end. Embryos and Jarvac are heavily pigmented (red and opaque).

Remstriss

The species is distinguished by 2 characters which although they occur separately in other species, seldon are found together as ihey are in the present one - whe atriat lip is close to, but separated from the aperture, and the double rows of zooids converge to the cloacal apernite. Tt also has a group of characters which it shares with A. crateriferum and the lemperate and parily sympatric.A. lanacratum nom noy...viz. the bulky sandy colonies, protuberan clocal apertures, narrow

zooids with 5 well-formed stomach folds, and the atrial lip separate from the aperture.
The zooid systems are not always so deeply depressed into the surface as they are in A. crateriferum, and A. lenacratum nom. nov, has sand in the test over the cloacal cavity and in the protuberant cone of the cloacal aperture. Both the latter species have their zooids artanged in a single circle around each common cloaca. In A. crateriferum the atrial lip is not close to the aperture as it is in the present species and A. lunacrarum does not have the same bulging branchial sphincter and long siphon. In A. lunacratuon the thoracic muscle bands, and in A. crateriferum the number of rows of stigmata are more numerous. The larvae of A. clivosum are in the same size range as those of A. lunacranum but larger than those of A. crateriferum. Larvae of the present species differ from A. Iunacratum in having fewer epidermal vesicles and more ampullae.
Aplidium pantherinum (Sluiter, 1898) and its synonyms from South Africa (see Millar 1962) have a smaller larval trunk, and although they have nartow thoraces and about 17 rows of stigmata like the present species, the atrial tongue is not separate from the aperture.

Aplidium clivosum has possibly more variation in its external appearance than most other species of Aplidium. The size of the systems varies, as does the number per colony, the amount of embedded sand, the colout and the depth of surface depressions. These variations are not geographically based however and the whole range of motphological variations occurs in tropical as well as temperate waters.
In view of its wide range in Australian waters, it is probable that it will be found to occur in the Western Pacific. It is possible that some of the specimens assigned to A. crateriferum by Van Name (1918) from the Philippines are of this species.

Aplidium congregatum n.sp.

(Fig. 69)

Distribution

Type Locauly: Queensland (North Suradbroke I., Point Lookout, coll. A. Rozefelds 17,11.78, holotype QM GH5584).
Further Records: Nonc.
Specimens are found tucked into narrow rocky crevices at the type Jocality.

DESCRIPTION

External Appearance: Sandy flat-topped lobes 1.5 to 2 cm diameter around the upper surface, narrow toward the base where they are joined through common test. The edges of the flat upper surface fuse with adjacent lobes. A layer of sand adheres to the outside of the stalks and sides of the lobes, but is absent from the upper surface. Internally sand grains are scattered sparsely amongst the zooids. Zooids are crowded and parallel in the test. They may be in rows along each side of long canals that converge to the sessile cloacal apertures on the flat upper surface.

Internal Structure: Zooids ane long and narrow, up to 5 mm long, of which the thorax and abdomen together comprise about half, and the thorax is about twice the length of the small abdomen. About 16 fine longitudinal muscles extend separately along the length of the zooid and are not gathered into bands on either side of the abdomen or the posterior abdomen, A distinct sphincter muscle is at the base of the 6 narrow, pointed lobes fringing the branchisl aperture, The atrial aperture is at the anterior end of the dorsal surface with the forkod atrial tongue extending from the anterior fim of the opening. Fine muscle fibres extend along the length of the atrial lip. The stigmata are in 11 rows of up to 12. The oesophagus is moderately long and natrow. The stomach is small and narrow with 12 langitudinal folds in its wall. There is the usual narrow mid-intestime, interrupted at the end of the descending limb of the gut loop by an oval posterior stomach. Smaill rectal caecaare at the proximal end of the rectum.

A large (4 or 5 oocytes) ovary is at the proximal end of the posterior abdomen and the testis follieles in a single or paired series are behind it in the long, narrow posterior abdomen. The holotype has up to 6 embryos being incubated in a developmental series lined up in the atrial cavity, tending to stretch the thorax longitudinally. Tailed larvae have a trunk 0.5 mm long with the tail wound three quarters of the way around it. Conical median ampultae (4) alternate with the median adhesive organs. An are of seattered epidermal vesicles (about 3 or 4 deep) is around the latera] line on each side of the adhesive organs and extending posterior to them along the dorsal and ventral border of the larval trunk. An ocellus and an otolith are present.

PIG. 68. Aplidium clivosumn.sp.-a,colony (QM GH5669); b, thorax and abdomen (QM GH5670); c, branchia] aperture, atrial aperture and arial lip showing sphincter muscles (SAM E2564); d, larva (QM GH5469). Scale: a. $1 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm} ; \mathrm{c}, 1.0 \mathrm{~mm} ; \mathrm{d}, 0.4 \mathrm{~mm}$.

REMARKS

The species is found in similar habitats and in the same geographic location as other flat-topped sandy, lobed species, all superficially resembling one another, viz. Aplidium incubatum n.sp., A. directum and Botryllus stewartense (see Kott 1990). The flat topped lobes of A, congregatum have more complex systems of crowded zooids than the others; Aplidium directum is distinguished by its tougher colonies with distinct circular systems, only 5 stomach folds and an atrial lip separate from the opening; Aplidium incubatum n.sp. tends to divide into separate lobes
each with a single system, its zooids have 25 stomach folds, and the larvae have numerous vesicles but no ampullae.

The larvae of the present species resemble those of A. opacum which has investing, naked colonies; and A. geminatum n.sp. which has stalked heads with long cloacal canals converging to terminal cloacal apertures.

Zooids of the present species share some characters with those of Aplidium fluorescum n.sp., but both larvae and colonies are different.

FIG. 69. Aplidium congregatum n.sp. (holotype QM GH5584) - a, b, colonies with positions of zooids shown in part of a colony lobe, \mathbf{c}, thorax, abdomen, part of posterior abdomen and embryos in atrial cavity; d, larya. Scales: $\mathbf{a}, \mathbf{b}, 1 \mathrm{~cm} ; \mathbf{c}, 0.5 \mathrm{~mm} ; \mathbf{d}, 0.1 \mathrm{~mm}$.

Aplidium coniferum Kott, 1963

(Fig. 70)
Aplidium coniferum Kott, 1963, p.102.

Distribution

NEw RECORDS: South Australia (Elliston. SA E2580). Tasmania (off Devonport. AM E309; Huon Channel, TM D2074). Victoria (Bass Strat, QM G11861 GH5605, MV H462; Cape Everard, AM E6231-2: Gabo 1., SAM E2592).
Previously Recorded: New South Wales (Montague North, Twofold Bay. AM U3921 Kout 1963).

The species is known from depths to 400 m (AM E6231-2).

DESCRIPTION

External Appearance: The colonies are upright spherical to egg-shaped lobes, largely naked and without sand in the thin layer of smooth surface test. A basal hard sandy holdfast is probably rooted in sand. Sand is present in moderate concentrations interrally. Zonids appear crowded in circular, oval to elongate systems, as well as some in double rows. However, the test is hard, whitish and almost opaque in preservative and it is difficult to determine the exact arrangement of the zooids. The shallow common cloacal cavities are relatively limited. They are surrounded by the fine, thread-like zooids, which are perpendicular at the surface, but cross one another posteriorly in the centre of the colony.
Internal Structure: Zooids are narrow. and long. The branchial siphon is short, with 6 rounded lobes, but the prebranchial area is relatively long. The thorax and abdomen are each about 2 mm even when contracted, and the posterior abdomen is many times that length. The atrial lip is small. pointed and arises from the body wall opposite the first row of stigmata. The atrial aperture is a small round opening, well removed from the lip. opposite the fifth or sixth row of stigmata. There is a pointed papilla posterior to the atrial aperture. About 2 longitudinal muscle bands are on the thorax and continue in wide bands along cach side of abdomen and posterion abdomen. Stigmata are in 22 rows of 8 per row. The oesophagus also is long, and wrinkled when contracted. The stomach wall has 5 deep folds. There is a long duodenum and mid-intestine, and a small oval posterior stomach in the descending limb of the gut Joop. Rectal caeca are not well developed.
A series of male follicies is in the posterior half of the posterior abdomen, and the small cluster of
nocytes is just anterior to the male follicles. A large embryo sometimes is found being incubated in the atrial cavity (QM G11861). The larval trunk is 0.65 mm long. It has lateral ampullac on each side near the base of the 4 median ampullae, the

FIG. 70. Aplidium conifermm - a. colony (OM GH797); b, thorax and abdomen (MV H462); c. larva (QM G1/861). Scales: a, $2 \mathrm{~cm} ; \mathrm{b}, 0.5 \mathrm{~mm} ; \mathrm{c}, 0.1 \mathrm{~mm}$,
latter altemating with the adhesive organs. The tail is wound about two-thirds of the distance around the tronk.

REMARKS

The large colony with embedded rather than surface sand and basal sandy holdfast, the long and narrow oesophagus, small and isolated atrial lip, and long thorax, are distinctive. The stomach folds are well formed, confirming that it is a species of Aplidium rather than Synoicum, which it resembles in having a dorsal papilla. The crowded systems distinguish the species from others such as A . crateriferum which, also has a long, narrow thorax, and separate atrial lip.

A colony from Bass Strait (AM E309) characteristic of this species, with sandy basal stalk. naked, upright, oyoid colony, and long narrow posterior abdomina criss-crossing internally, originally was assigned to A. jacksoni by Kott 1963. Despite her interpretation that the zooids were similar to those of A. jacksoni, this was not confirmed on reexamination of the specimen. The zooids are juvenile vegetative ones and neither stomach nor branchial sacs are developed.

Aplidium crateriferum (Sluter, 1909) (Fig. 71. Plate 13a-c)

Amaroveium crateriferum Sluiter, 1909, p.103.
Not Van Name 1918, p.163. Not Tokioka, 1967, p.40. Aplidium crateriferum: Millar, 1975, p. 242.

DISTRIBUTION

New Records: Western Australia (Flinders Shoal near Onslow. QM GH5403; Exmouth. QM GH5398). Queensland (Capricorn Group, QM GH5158-9 GH5567: central section Great Barrier Recf. QM GH5422).
Previously Recorded: Philippines (Sluiter 1909, Van Name 1918, Millar 1975).

Description

External Appearance: The colonies are bulky, gelatinous and translucent but firm. The surface is smooth, and raised in high rounded ridges around irregular surface depressions. One to 3 large conical elevations with a terminal comnon cloacal aperture arise from each depression. Single apertures are sometimes more or less central but often at one or the other end. A shallow but extensive cloacal cavity is beneath the rela-

FIG. 71. Aplidium crateriferum - a, colony (QM GH5158); b, zooid (Heron 1.). Scales: a, 2cm; b, 0.5 mm .

tively thin surface test in the floor of each depression. Zooids surround each cloacal cavity, their branchial apertures at the base of the surface ridges, and protected by them. The atrial apertures are directed laterally to open into the cleacal cavity,
In some colonies a little sand is in the surface test around the apertures, but otherwise embedded sand is not present, and the surface is naked. In other colonies, sand is scattered throughout the test, amongst the zooids as well as in the zooidlise areas, and is on the external surface of the high ridges, although the surface of cach dopressed area is naked (QM GH5403).
Living colonies are said to be grey with rod zooids, although photographs of specimens following their removal from the substrate are brown and yellow. In preservative the zooids, test and preservative are bluish-pink.
Internal Structure: The zooids are long and thread-like, with the thorax (to 5 mm) twice the length of the abdomen. The posterior abdomen is many times the length of the rest of the zooid. A long, conspicuous branchial siphon has a natrow bulging sphincter muscle at the top, near the base of the branchial lobes. This sphincter appears to bave a blood sinus associated with it, and it is invariably pink and translucent.
There is a long pre-branchial area between the branchial tentacles and prepharyngeal groove and this effectively increases the length of the branchial siphon, The branchial tentacles cause a bulge about halfway down the siption. Imperforate areas are anterior to the stigmata, and along cach side of the endostyle. The atrial lip is usually a single pointed but quite fleshy lobe from the body wall anterior to the opering. The atrial apesture also has a sphincter muscle. About 15 fine longitudinal muscles are on the thorax and extend the whole length of the zooid. Fine transverse muscles are in the transverse vessels, but not in the parietal body wall. There are 18 to 21 short rows of up to 14 oval stigmata on the left and up to 10 on the right side of the branchial sac. The maximum number of stigmata (8 to 14) is in the fifth to eighth rows. Up to 4 more stigmata are on the left than the right. On the left the triangular dorsal languets are opposite the third to fourth stigmata i.e. almost halfway across the pharyngeal wall in the smaller, narrower zooids.
The short gut loop has the usual parts, with a slightly longer oesophagus than usual, and a relatively small stomach, with 5 distinct, deep folds in its wall. The posterior stomach also is short. Two conspicuous rectal caeca form a valve at the
proximal end of the rectum. The posterior abdomen is long and thin. Two irregular longitudinal series of testis follicles are about halfway down it.

Single large embryos are in the thoraces of zooids collected in November, but not in May. The larvae are amongst the largest known for Aplidium, with the trunk 2 mm long. The tail winds about three-quatters of the way around it. The long slender stalks of the 3 median adhesive organs are obscured by crowded epidermal vesicles which develop from the anterior part of the larval trunk.

REMARKS

The large, firm gelatinous colonies with surface depressions over the systems are one of the most conspicuous aspects of this species. The colonies are reminiscent of the colonies of Lissoclinum patella (see Kott 1980), Synoicum castellatum (see above) and Aplidium clivosum.
The sandy species Aplidium caelestis, with zooid openings protected by sand-filled swellings on the surface test, has similar narrow zooids with their atrial lip separate from the opening but they do not have the conspicuous surface depressions and circular systems of the present species.
The mostly temperate Aplidium clivosum also has similar zooids which open into deep surface depressions. However, it has zooids in double rows converging to the protruding common eloacal apertures, and fewer (14 to 18) rows of stigmata.
Sluiter's type specimen, from the Philippines, a large, fleshy mass, maximum dimension 10 cm and up to 1.5 cm thick with characteristic surface depressions and projecting cloacal apertures, closely resembles the present colonies. Millar (1975) describes similar colonies from this localtion. Other colonies from the type locality (Van Name 1918) are irregular with deep folds, but only shallow depressions, large systems with irregularly distributed zooids opening onto the flattened upper surface of the colony, and the surface thickly encrusted with foreign particles. These do not seem to be conspecific with the present species and are more like specimens of Aplidiwn caelestis (see below), which has similar zooids, but double row systems and embedded sand.
Tokioka's (1967) specimens from the Palau Is also appear to belong to some other species. They lack the characteristic surface depressions and the atrial lips exterta from the upper rimi of the opening rather than being separated from it as in the present species.

The narrow branchial sac, with wide bands of imperforate pharynx dorsally and ventrally is a characteristic of this species referred to by Sluiter (1909) in his description of the type. It should be noted that his figure of the branchial sac of the type (Sluiter 1909, pl.V7b) has been reversed the larger number of stigmata and the dorsal languets are on the left, not on the right.
However, Sluiter appears to have overlooked the position of the atrial aperture and the sphincter muscles of both apertures, and miscounted the number of stomach folds (see Millar 1975). Sluiter has not always been accurate in his count of stomach folds (see A. pantherinum: Millar, 1962).

Aplidium depressum Sluiter, 1909
(Fig. 72)
Aplidium depressum Sluiter, 1909, p.102. Hartmeyer 1909, p.1499. Van Name, 1918, p.167. Kott, 1963, p.95. Kott and Goodbody, 1982, p. 515. Not Kott 1976, p. 60; 1981, p. 160.

Distribution

New Records: Queensland (Capricorn Group, QM GH890 GH916 GH2275 GH5680 GH5682 GH5690 GH5692 GH5693-702 GH5705-6).
Previously Recorded: Queensland (Bargara Kott 1963). Indonesia (Sluiter 1909; Van Name 1918). Hong Kong (QM G12796 Kott and Goodbody 1982).
These transparent, investing sheets, are probably more common than the records suggest. They are difficult to remove from the substrate and possibly are often overlooked by collectors.

Description

External Appearance: Some colonies are thin, investing gelatinous sheets with a smooth upper surface, or they are irregular with the surface divided by shallow creascs, or raised into convoluted ridges with common cloacal apertures along the ridges. One colony (QM GH5695) is a small cushion, trimmed to fit the back of a small crab on which it was found. In preservative, the small zooids are irregularly distributed and randomly oriented, usually lying at angles to one another. The test is translucent to glassy, firm and colourless. In life the zooids are maize yellow or orange to bcige or pinkish beige, but they become white in prescrvative. Prochloron is found in the cloacal cavity and on the surface of some colonies (QM GH5682; sce also Kott et al. 1984). Sand grains are sparsely scattered through the test, occasionally becoming crowded toward the base.

FIG. 72. Aplidium depressum - a, colony (QM GH890); b, c, thorax and abdomen, posterior abdomen separately (QM GH5697 QM GH5688); d, larval trunk (QM GH5693). Scalcs: $\mathbf{a}, 1 \mathrm{~mm}$; b, c, 0.5 mm ; d, 0.05 mm .

Minute test cells appear as evenly spaced grains in the test.

InTERNAL STRUCTURE: Zooids are small, being no more than 3 mm overall. The thorax and abdomen are of about equal length, and together are slightly shorter than the posterior abdomen which usually is relatively slender, tapening to its posterior end. The branchial aperture has 6 Jobes. The atrial aperture is a single circular opening, sometimes on a short siphon, halfway down the thorax. There is no atrial lip. Stigmata are in 5 rows of up to 10 , their length reducing at the dorsal end of each row.

The stomach wall has 11 distinct folds. A shott thick duodenum and oval posterior stomach are in the post-pyloric part of the descending limb of the gut loop. The posterior abdomen is relatively short with a small ovary anterior to one or 2 rows of testis follicles. Up to 3 embryos are in the atrial cavity of colonies collected from Bargara in August and from the Capricorn Group from August to March (QM GH2276 GH5680 GH5683 GH5693-4 GH5702-3).

The larvae are amongst the smallest aplousobrunch larvae known, with a spherical trunk only about 0.35 mm in diameter. The greater part of the trunk is occupied by the developing adolt organs - gut and pharynx. However, the cerebral vesicle is large in relation to the size of the trunk. A row of 7 or 8 epidermal vesicles is on each side of the median adhesive organs. Conspicuous test cells are in the surface of the larval test, tending to obscure the internal structure of the larvai.

Remarks

The principal characters of the present species are the transparent gelatinous test, the beige, yellow or pink zooids, the lack of an atrial lip, the 5 rows of stigmata, the relatively numerous stomach folds (12) and the minute spherical larval trunk.

The type specimen (Sluiter 1909) was gelatinous, with violet zooids seen through the test. Systems were not observed, although cloacal apertures were. The atrial siphon, without ah atrial lip, is halfway down the thorax. Sluiter reported 9 rows of up to 14 stigmata in the branchial sac and numerous narrow folds in the stomach wall. Thus there is a discrepancy in the number of rows of stigmata and the colour between Sluiter's deseription and the newly examined material. There also is a discrepancy in the numbers of rows of stigmata in Van Name's (1918) specimens, with 6 or 7 rows of stigmata. Both Van Name and Sluiter may have had difficulty in determining the
exact number of rows of stigmata in these small zooids, for most of the other characters conform with the newly recorded material. The ragged colony from Fiji (QM GH86) assigned to this species by Kott (1981), has been reexamined. It has, as reported, 8 rows of stigmata and a minute stomach with about 12 folds. There also is a narrow atrial lip from the upper border of the aperture which Kott overlooked. The colony is not conspecific with the present species. The colony (QM G12796) from Hong Kong (Kott and Goodbody 1982) appears to be correctly asstgned.

Aplidium directum Kott, 1972
(Eig. 73)
Aplidium direcrum Kott, 1972c. p. 246.

DISTRIBUTION

New Recorids; Queensland (Dunwich, QM GH5517 GH5519: Cape Moreton, QM GH5614).
Previously Recorded: New South Wales (Cronulla - AM Y1110-1 Kott 1972c).

The specimens are dredged from 6 m to 140 m from the sea floor.

DESCRIPTION

External Appearance: Colonies are flattopped, upright lobes, either separate or joined to a common base to form irregular, sandy masses up to 2.5 cm high. The commen base often is thin and keel-like and probably is buried in the substrate. Each separate lobe is about 1 cm diameter, with a raised rim around its upper margin, surrounding a central depression containing a common cloacal aporture. Zooids are around the shallow common cloacal cavity beneath this depression.
Crowded sand particles are all over the surface of the colony and embedded throughout the vest. Smaller sand grains only are on the surface in the terminal depression around the common cloacal aperture. In one extensive colony (QM GH5517) these smalles grains in the centre of each terminal lobe are black, apparently coal particles. Larger siliceous sand particles mixed with sparse black grains to give a grey colour are all over the remainder of the colony.

Internal Strukture: Zooids are thin and thread-like. The thorax and abdomen are of about equal length and together about 6 mm . The branchial siphon has 6 distinct lobes. The atrial lip arises from the body wall just anterior to the apeture, which projects slightly on a short siphon

FIG. 73. Apluclum direchm (QM GH5517) - a, colony: b, lop of colony tobe showing depressions into which systems open with smaller grains of embedded sand; c, thorax, ahdomen and embryo in atrial cavity; d, harval Irank. Scales: $\mathfrak{a}, 1 \mathrm{~cm} ; \mathbf{b}, 2 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm} ; \mathbf{d}$, 0.1 mm .
with a sphincter muscle. The tip of the atrial lip is pointed or bidentate. There is a long unperforated band of pharymgeal wall both anterior and posterior to the perforated area. Short, wide stigmata are in 101013 tows of up to 14 per row. The ocsophagus is a narrow vertical tube. The stomach, also relatively long and narrow, has 5 welldefined folds. In extended zowids the post-pyloric part of the gut loop is relatively long. The descending limb has a long narrow duodenum and mid-intestine, but a relatively thick and slightly spiralling extent of gut in the lower one-third of the descending limb is in the position usually occupied by the shor posterior stomach, well developed rectal caeca are at the proximal end of the rectum.

One or 2 embryos are in the posterior part of the atrial cavity in the material from Dunwich (collected in August), but not in the other specimen lot from Cape Moreton taken in the same month (QM GH5614). The larval trunk is about (0.5 to 0.6 mm long. It has a conical median ampulla in each of the interspaces between the adhesive organs. An arc of epidermal vesicles is on each side of the median line around the anterior half of the larval tunk. The tail is wound about two-thirds of the way around the trunk. Occllus and otolith are present.

REMARKS

The colony of this species resembles that of Sywoicum obscurum and Aplidium filiforme n.sp. in the quantity of sand present, the size of the zooids, and the circular systems in lobes rising from the upper surface. Aplidium filiforme n.sp. is distinguished by havingonly 5 rows of stigmata a shorter branchial sac, a longer oesophagus, shallower stomach folds, 4 or 5 systems per colony lobe, and Jarvac without median ampullae.

The species is found in association with others superficially similar and sandy, viz. Aplidium incubatum n.sp., and Bofryllus siewariense (sce Kott 1985).

Larvae are not known fiom the New South Wales population - the type specimens of this species. However the similar morphology of these and the matcrial from Morcton Bay indicate that they are conspecific.

Aplidium distaplium n.sp.
(Fig. 74)

DISTRIBUTION

Type Locality: Vicioria (Boss Strail off Ninely Mile Beach, 10 km SW Scaspray. 560 m off shore, calec-
narite reef 12 m , fast currents, coll. J.E. Watson 21.3 .80 . holotype QM G12728; paratype QM G12729).
Further Record: South Australia (Reevesby I., QM (GH5602).

DESCRIPTION

External. Appearance: The colonies are solid, sandy irregulat masses. Sand is crowded throughout, obscuring the small zooids and their arrangement. Zooids are tightly enclosed in the sandy test.

FIG. 74. Aplidium distaplinm n.sp, - a, zooid, showing small posterior abdomen, long oesophagus (holoispe QM G12728); h, therax (paratype QM G12729); c, larval trunk (holotype QM G12728). Scales: a, b. $0.5 \mathrm{~mm} ; c, 0.1 \mathrm{~mm}$.

INTERNAL STRUCTURE: Zooids are minute, the thorax, abdomen and posterior abdomen together being about 4 mm long, of which the abdomen is about half the length, the thorax and posterior abdomen being relatively short. The 6 branchial lobes are triangular and the siphon is short. A flat atrial tongue, undivided, bi- or tripartite, extends out from the lupper rim of the small aperture. About 15 muscle bands extend from the thorax. although they are fine, and the zooid is delicatc.

Stigmata are in 4 rows of 12, and thesc rows are arranged in 2 pairs as in Sycozoa (see Kott 1990). The vesophagus is an unusually long vertical tube, and the 5 -folded stomach is in the posterior half of the abdomen. The post-pyloric part of the descending limb of the gut loop (with the usual duodenum, mid-intestine and posterior stomach) is not as long as the oesophagus.

Sometimes the postcrior abdomen is short, with only an ovary developed. In the male phase it is longer, with a double row of male follicles.

Embryos (up to 4) are incubated in the atrial cavity. The larval trunk is 0.52 mm long. A large conical median ampullae with epidermal vesicles branching off it is in cach interspace between the adhesive organs. Also there is a median dorsal ampulla and a ventral one. Epidermal vesicies are also scattered in an are in the test around the anterior half of the trunk on each side. The tail is wound about three-quarters of the way around the trunk on each side of the Jnedian line.

REMARKS

The species resembles A, solidum in its solid hand sandy colony, although the larval trunk of the present species is longer. The presence of 4 rows of stigmata rather than 5 , is unusual in this genus. In the selated genus Synoicum only S. bowerbanki has a similat number of rows of stigmata (see above).

Aplidium elatum Kott, 1972
Aplidium clatum Kont, 1972b. p. 177
DISTRIBUTION
New Recoros: None.
Previousliy Recornme: South Ausiralia (Elliston
Bay - SAM E905 E906 Kott 1972b).

Descriftion

External Appearance: Colonies form tall, undulating fan-slaped lamellac, 1 cm thick to 6 en high. Sand is present throughout, and the colony is hard. Common cloacal apertures are randomly
distributed over the surface and zooids are along each side of the eloacal canals converging to them. The surface test is raised slightly over the anterior ends of cach of the zooids.
Internal Structure: The anterior part of thoraces and the endostyles are orange in preservative. Zooids are about 3 mm long, the thorax and posterior abdomen approximately equal in length and slightly longer than the abdomen. The branchial lobes are sharply pointed. The atrial aperture, opposite the fourth to sixth row of stigmata has a large lip divided into 3 large, muscular, leaf-like lobes from its anterior rim. The muscles in the atrial lip are longitudinal, extending down the centre of each lobe. About 12 longitudinal thoracic muscles extend posteriorly in 2 bands along each side of the zooid. Stigmata are in 8 rows of about 8 . The stomach is short with about 15 longitudinal folds. The usual duodenum and mid-intestine interrupted by a posterior stomach comprise the post-pyloric part of the dcscending limb of the gut loop. Gonads are in 2 series in the posterior abdomen. Larvae are not known.

Remarks

The sandy colonics of this species resemble those of A. petrosum n.sp. and A. solidum, although they are neither as branched, nor as extensivc. The zooids, with their large atrial lips from the upper border of the opening, and 15 stomach folds resemble A, opacum, as does their arrangement in double rows of zooids converging to the common cloacal apertures.

Aplidium filiforme n.sp.

(Fig. 75)
Aplidium thomsoni: Kott, 1963, p. 97 (part, specimens from Cockburn Sound). Not A. thomsoni Brewin 1950a.

Distribution

Type Locality: Queensland (Heron 1. Blue Pools, coll. D. Рarry 9.11.86, holotype QM GH5527:9.11.85, paratype QM GH5528).
Further Records: Western Australia (Cockburn Sound - Kott 1963). Queensland (Capricorn Group, QM GH5511 GH5515 GH5523 GH5554-5).

DESCRIPTION

External Appearance: The colony consists of upright, flat-topped sandy lobes that rise from the surface of a common basal mass, and aggregate together along thcir length through the sand attached to the surface test. They form a sandy
platform up to 4 cm in maximum dimension and about lcm high. Groups of 4 or 5 systems open onto the upper surface of each lobe. In some colonies the tops of a number of lobes seem to fuse to form a cushion-like platform, with crowded systems opening on its upper surface. Each system consists of a wide, sessile eloacal aperture in the centre surrounded by branchial apertures obscured by the sand which is embedded in the test. Sand is not always present around the cloacal openings. The systems are usually quite conspicuous, even when sand is present on the upper surface, for the branchial apertures have small sand particles outlining them, while large sand grains are embedded around the outside of each systcm and in the centre around the common cloacal aperture. Living zooids have orange thoraces.

Internal Structure: The zooids are minutc, thread-like, about 0.3 mm thick and about 7 mm long. The thorax and abdomen together are about 3 mm long and the posterior abdomen is at lcast twice that length. The branchial siphon is short although the branchial sphincter is large, bulging and conspicuous. The atrial aperture, with a short, stumpy tripartite lobe from the upper rim of the opening, is antero-dorsal. The 5 rows of stigmata have no more than 6 per row, although these could not be counted accurately. The oesophageal neck is longer than the post-pyloric part of the gut loop. The stomach has 5 distinct folds.

Ovary and testis are not mature in the one zooid at the same time. The ovary, when present, is a short distance from the posterior end of the gut loop - in the middle of the anterior third of the postcrior abdomen. When the testis follicles are mature they are in a single row in the middle third of the posterior abdomen.

In the holotype colony 3 embryos are lined up in the atrial cavity. The most anterior of these is a tailed larva. The trunk length is surprisingly variable being 0.32 to 0.6 mm . The adhesive organs are in the anterior mid-line. Epidermal vesicles, scattered 2 or 3 deep, in a long narrow are along each side of the modian line, branch off common stalks. Median vesicles also branch off one or 2 common stalks in each interspace between the adhesive organs. The arc of lateral vesicles extends well postero-ventrally and pos-tero-dorsally.

Remarks

This species, with its unusual lobed colony, small zooids with 5 rows of stigmata, 5 stomach folds, orange thorax and colourless abdomen and
posterior abdomen resembles Aplidium mernooensis (Brewin, 1956) from Chatham I., New Zealand and one colony from New Caledonia (Monniot 1987). Like the type, the specimens from New Caledonia have single systems of zo-
oids in each lobe of the colony, and 8 branchial lobes. Although Brewin records the height off the substrate of A. mernooensis as only 2 mm , its zooids are said to be 8 mm long. Thus it appears that the base of the colony was embedded in the

FG. 75. Aplidium filiforme n.sp. - a, whole colony (QM GH5523); b, upper surface of colony lobes showing systems (QM GH5515); c, thorax with embryos in atrial cavity (QM GH5515); d, outline of whole zooid (QM GH5515); e, larval trunk (QM GH5555). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 5 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm} ; \mathbf{d}, 1 \mathrm{~mm} ; \mathbf{e}, 0.1 \mathrm{~mm}$.
substrate, and that it is much the same size as the present species. However, the present species has more than one system per colony lobe to distinguish it, and although A. mernooensis has sand externally, it lacks the embedded sand of A. fillforme. There also are more numerous stigmata in the Chatham I. colonies than in A. filforme. Larvae from the New Caledonian colony (A. mernooensis: Monniot, 1987) have a tnuk 0.65 mm long witt a wide lateral band of vesicles obscuring the anterior end of the trunk similar to the vesicles in A. caelestis, A. clivosum, A. crateriferum, and A. griseum n.sp. The vesicles in the narrow lateral arc of the present species are less numerous and are spread over a smaller area at the anterior end of the trunk.
The large bulging branchial siphon known in A. crateriferum and A. clivosum is an unusual character not usually present in species with zooids as small as those in the present species. Monniot (1987) records a strong branchial spincter in the New Caledonian specimen. The larvae and zooids of the present species are among the smallest known in the genus.
Aplidium bacculum also has only 5 rows of stigmata, but its terminal heads, onto which zooids open, are naked, its systems less regular, its stalks longer and the oesophagus about twothirds of the length of the abdomen.

Aplidium flaorescum n,sp.
(Fig-76)
Aplidium multiplicatum: Kott, 1963, p. 103 (part specimen from Sarina).

DISTRIBUTION

Type Locality: Queensland (Heron I., NE Point, rubble fauna, low tide, coll P. Kott 4.5.85, holotype QM GH5243; Heron I., NE reef, rubble fauna, coll. P. Kolt 14.11.85, paratypes QM GH5244; coll. P. Kott May 1987, paratypes QM GH5245; NE Heron reef, coll. P. Kon 2.11.86, paratypes QMGH5246; Heron I., The Canyons, coll. P. Kott 13.11 .85 , paratypes QM GH5247),
Further Records: Queensland (Sarina, AM Y1448; Lizard 1, QM GH5630; Capricorn Group, QM GH5318-24).

DESCRIPTION

External Appearance: The colonies are small, rounded to dome-shaped cushions, to
about Icm in maximum thickness. Only the colony from Sarina (AM Y1448) forms extensive investing sheets. Living test is translucent, or opaque-whitish, with green fluorescent particles around the branchial apertures and in the surface test. These particles give an azure-blue sheen to the colony. Zooids are 'bulf pink', or 'maize yellow ${ }^{+}$(Ridgeway 1886), or pinkish white, with an orange stomach. In preservative the zooids are beige to white and the test is almost opaque, or translucent to glassy. One of the living specimens (holotype) was described as a "translucent fluprescent potato.
The test is firm and naked, and there is neither adherent not embedded sand. The systems are circular, although often they are obscure in preserved specimens, with the zooids lying at various angles to one another in the firm test.
Internal Structure; Zooids aje about 6 mm long when relaxed, the thorax and posterior abdomen of about equal length and the abdomen only a fifth of the total length. The branchial lobes are small and pointed and the branchial aperture almost sessile. The small and undivided atrial tongue arises from the upper border of the opening, which has a sphincter muscle. Fifteen to 20 longitudinal muscle bands are on each side of the thotax, and extend the length of the zooid, evenly spaced around it rather than forming a band on each side of the abdomen and posterior abdomen. The branchial sac has 10 rows of up to 16 stigmata. The moderately long stomach has 12 to 14 deep folds in its wall. The duodenum and proximal sections of the mid-intestine are wide, the latter being only slightly constricted from the oval posterior stomach.
Gonads are absent from the anterior half of the posterior abdomen, which is relatively short and thick and only occasionaliy larger than the thorax. The ovary is about halfway down the pasterior abdomen, with the testis follicles in 2 irtegular series posterior to it.
With only one exception (May 1987) the colonies from the Capricorn Group, all collected in April, May, August and November, have zooids with 2 or 3 embryos lined up in the atrial cavity. The larvae are small, the trunk being about 0.5 mm long. They have the tail wound slightly more than halfway around the tronk. An ocellus and an otolith are present in the cerebral vesicle. There are 3 median adhesive organs on nartow stalks at the anterior end of the trunk, and up to 9 particu-

FlG. 76.,Aplidium fluorescum n.sp- ach, zooids (paratypes QM GH5247 GH5244); c; larya (paratype QM GH5247). Scales: $\mathrm{a}, \mathrm{b}, 0.5 \mathrm{~mm} ; \mathrm{c}, 0.1 \mathrm{~mm}$.

larly large, spherical ectodermal vesicles separate from the lateral line on each side. Up to 3 embryos are in the Sarina specimens collected in August. Their larvae differ from the Capricom Group ones only in having one more (total 10) epidermal vesicles in each of the lateral arcs. Ectodermal ampullae are never present.

REMARKS

The species is distinguished from others with naked colonies by its small zooids with the small atrial lip from the anterior rim of the opening and by the number of stomach folds and rows of stigmata. Aplidium gelasinum n.sp. is distinguished by its narrow thorax with only 8 stigmata per row. Its small larvae are also distinctive, and although similar ectodermal vesicles occur in other species (e.g. A. multiplicatum), there are fewer in the present species than in any others known.

Aplidium gastrolineatum n.sp.
 (Fig. 77)

Aplidium flavolineatum: Kott, 1972b, p. 177 (part, specimen from Waldegrave I.).

DISTRIBUTION

TyPE LOCALITY: South Australia (Ikm NW of Waldegrave I., Anxious Bay, $33^{\circ} 33^{\prime} \mathrm{S}, 134^{\circ} 46^{\prime} \mathrm{E}$, rocky bottom, slow current, 23 m , coll. S. Shepherd 11.5.71, holotype SAM E2584).
Further Records: South Australia (Pcarson I. QM GH1292; Flinders I., QM GH2305).

Distribution

External Appearance: The holotype colony is an almost spherical cushion, 2.5 cm diameter and 2 cm high. It is fixed basally by a relatively broad sandy area. A thick layer of sand is present around the outer surface, being absent only from the circular depressed areas into which the systems open. Protruding common cloacal apertures are in the centre of each of these depressions. Zooids are in circles around each common cloacal aperture. The colony from Pearson I. lacks sand on the upper surface although it is present around the sides and base. It has the same circular systems and protuberant cloacal apertures. Sand is not cmbedded internally. The test is soft, white and translucent, and both colonies are distorted.

FIG. 77. Apliditm gastrolineatum n.sp. (holotype SAM E2584) - a, colony; b, thorax and abdomen; c, stomach from the left side. Scales: $\mathrm{a}, 1 \mathrm{~cm}$; b , $0.5 \mathrm{~mm} ; \mathbf{c}, 0.5 \mathrm{~mm}$.

The zooids are tightly embedded in the test and a sheath of it, containing white opaque cells, clings to the zooids when they are removed. The living colonies are described as having a pink matrix with white zooids.
INTERNAL STRUCTURE: The zooids are robust, and the thorax and abdomen logether are about 4 mm long. The relaxed thorax is longer than the abdomen. The 10 fine longitudinal musele bands on the thorax extend the length of the zooid in a wide band on each side. The 6 rounded branchial lobes are distinct. The atrial lip extends out from the upper rim of the aperture at the anterior end of the dorsal surface. It is thick and fleshy, with its tip divided into 3 rounded lobes. The stigmata are in 16 rows of up to 14 . The stomach is relatively small, its diameter not markediy greater than that of the duodenum. Its wall has 24 mostly oblique folds. The stomach wall is more or less divided into 4 quarters with the folds in each quarter running obliquely to meet those of the adjacent quarters dorsally and ventrally, and in the middle of the mesial and Jateral aspects. Threc folds on the left side of the mid-dorsal line of the stomach, and 3 on the right of the mid-dorsal line do not reach the posterior end of the stomach, and further oblique folds in the middle of each side do not reach the anterior end. The duodenum and proximal end of the mid-intestine are wide. Rectal caeca are at the proximal end of the rectum.

Larvae are present in South Australian specimens collected in October (Kott 1972b, p. 174 Fig. 30). They have a larval trunk 0.8 mm long, and median and lateral ampullae between the adhesive organs, They lack epidermal vesicles.

REMARKS

The naked circular depressions each with a central protruding cloacal aperture, into which the systems open, are reminiscent of the surface of Aplidium lunacratum nom. nov. However, the latter species has only 5 stomach folds, and its atrial lip arises from the body wall anterior to the aperture, rather than from its anterior tim.
Aplidium incubatum n.sp. from Queensland also has circular systems opening into conspicuously naked surface areas. However, it has the surface of the colony partially divided, each division containing a system, and it has paraltel longitudinal stomach folds.

Kott (1963, 1972a-c, 1975) erroneously assigned various specimens to the South African species A. flanoluteatam Sluiter, 1898 on the busis of the number of gastric folds. Re-examination of these specimens has shown that they have
other characters which distinguish them from one another, and from the African species (see A. multilineatum n.sp., A. robustum n.sp., A. multiplicatum, A. uteute and the present specjes). The present species is distinguished from the African A. flavolineatum by its oblique stomach folds and more numerous rows of stigmata. Aplidium robustum n.sp., which has similar numbers of stigmata and stomach folds, has more crowded systems and sessile cloacal apertures.

Aplidium gelasinum n.sp. (Fig. 78)

Distribution

TYPE LOCALTTY: Queensland (far Northern Great Barrier Reef, Tydeman Reef, coll. AlMS Bioactivity Group 23.4.87 Q66 B2089, holotype QM GH5333). Purther Recoros: None.

DESCRIPTION

EXTERNAL APPEARANCE: The colony is a flattopped cushion; 7 cm in maximum dimension and 1 cm high. In preservative, it has a white opaque deposit in the surface test, which emphasises the circular zooid systems, being more opaque around the outside of each system where the surface is raised into a rounded rim and the test is thicker - not being interrupted by either zooids or cloacal cavity. Each system is about 3 mm diameter. The cloacal cavity is circular with a central protuberant aperture. White deposit is concentrated in the sufface layer of test. Internally the test is gelatinous and translucent. The zooids are firmly embedded and the sheath of test immediately surrounding each contains opaque, white cells. The specimen is reported to have been orange with orange zooids in life,

Internal Structure: The zooids have a long posterior abdomen, although the thorax and abdomen together are only about 3 mm . The atrial Jip, from the upper rim of the opening, has from one to 3 points. Stigmata are in 16 rows of only about 8 per row. The small, relatively short stomach has 16 to 18 longitudinal parallel folds. Duodenum, mid-intestine and posterior stomach are of the usual form. When contracted the posterior abdomen is pulled up into a coil behind the abdomen. Gonads are not mature in this specimen, and larvae are not known.

REMARKS

Superficially, the regular circular systems in this opaque, white calony resemble Distaplia prolifert Koll, 1990 and Morchellium pannosum.

The crowded small, regular circular systems also resemble those of A. lunacratum nom. nov., although the latter species is distinguished by its external layer of sand between the systems and its fewer stomach folds. Aplidium protectans has circular systems, but 8 branchial lobes, more numerous rows of stigmata, and fewer stomach folds. Aplidium fluorescum and A, wreute have naked cushion-like colonies with circular systems, and numerous stomach folds like the present species. However they are softer colonics, have more stigmata per row and lack the surface depressions of the present species.

Aplidium geminatum n.sp.

(Fig. 79)
Aplidum nustraliensis Kott. 1963, p. 111 (part, specimens from Port Lineoln and Western Port).

DISTRIBUTION

Type Locality: South Austratia (Price L.. Avoid Bay, coll. S. Shepherd 9.4.87, holotype QM GH4175; Port Bonython jetty, 6m, coll. G.A. Powell, paratype QM GH4229).
Furtier Recorts: T'asmania (Bass Strait. SAM E2593); South Australia (Pon Lincoln - Kont 1963); Victoria (Westernport - AM U3914 Kot 1963).
Although other records are from relatively shallow water, the specimen from Bass Strail is from 92 m .

DESCRIPTION

External Apptarance: Colnnies consist of spherical to oval heads (3 to 6 cm diameter), each on a thick, sandy stalk, occurring singly or in clumps. Long, more or less parallel, sometimes branching cloacal canals are along the sides of the heads. Zooids are arranged in double rows, a row along each side of the canal. The canals open to a number of large cloacal openings around the upper margin of the head, or to a few terminal apertures. A wide zooid-free strip of test is between adjacent double rows of zooids. A layer of sand is present on the outer surlace of the colony, including the stalk. It is absent only from a bare area around the cloacal apertures on the top of the head. Sand is not present internally. The contracted, preserved colonies have a conspicuously transversely wrinkled sandy stalk.

FIG. 78. Aplidium gelasinum n.sp. (holotype QM GH5333) - a colony from upper surface; b, zooid. Scales: a, Iem; b. 0.5 mm .

The anterior ends of the zooids are perpendicular to the surface, but the posterior ends curve down into the stalk and cross one another.

Internal Structure: Zooids are robust, the thorax and abdomen together being about 3 mm long when contracted. The posterior abdomen is longer and varies in length. About 12 longitudinal thoracic muscles extend posteriorly, forming a wide band along each side of the abdomen and posterior abdomen. The 6 -lobed branchial siphon is short. The alrial aperture is a conspicuous, anteriorly oriented opening with a large, con-
spicuous atrial lip, deeply divided into 3 long pointed lobes, produced from the upper rim of the aperture. In some zooids 5 or 6 conical points project from the body wall in a transverse row just behind the atrial aperture. Longitudinal thoracic muscles lie between these projections.
Fifteen rows of 10 to 12 large, oval stigmata are present in the wide pharynx. The relatively long barrel-shaped stomach has 20 to 23 parallel longitudinal folds. The duodenal area is relatively long and roomy, and an oval posterior stomach is in the descending limb of the gut loop near its bend.

FIG. 79. Aplidium geminatum - \mathbf{a}, \mathbf{b}, colonies both showing thick sandy transversely wrinkled stalk (a, QM GH4175, indicating arrangement of zooids in vertical rows with a number of terminal cloacal apertures; b, SAM E2593 with 2 terminal cloacal apertures); c, d, thorax and abdomen (c, SAM E2593 showing transverse row of dorsal papillac; $\mathrm{d}_{, 1}$ QM GH4175); e, larval trink (AM specimen from Port Lincoln). Scales: $\mathbf{a}, \mathbf{b}, 1 \mathrm{~cm} ; \mathbf{c}, \mathbf{d}$, $0.5 \mathrm{~mm} ; \mathbf{e}, 0.2 \mathrm{~mm}$.

Gonads are in the long posterior abdomen. Larvae are not present in the newly recorded specimens taken in February and April. However, they are present in the type material collected in September and November (see Kott 1963), The larval trunk is 0.9 mm long with a band of numerous epidermal vesicles from the antero-lateral ridges along each side of the 3 median adhesive organs and the median ampullae that alternate with them.

REMARKS

The stalked colonies with parallel, double row systems down each side resemble Sycozoa and some Distaplia species (e.g. D. australiensis). Amongst Aplidium the species has some characters it shares with A. australiense and A. brevilarvacium, notably the stalked colonies with double
row systems converging to relatively few common cloacal apertures. Of these two species, A. brevilarvacium, with its common cloacal aperture on the upper surface of the head, and relatively few cloacal canals, most closely resembles the present species. However, the zooids of both A. australiense and A. brevilarvacium are smaller than in the present species and they have fewer stomach folds, and fewer stigmata. There are other differences in the size and shape of the colonies (see species descriptions below). A conspicuous character of the present species is the large atrial lip with its 3 long pointed lobes.
The protruding dorsal papillae in a transverse row behind the atrial aperture are at the level of, and may be homologous with, the dorsal median papillae present in species of Polyclinum and Synoicum.

FIG. 80. Aplidium griseum n.sp. - a, colony (QM GH5171); b, c, zooids (holotype QM GH5212 GH5172); d; larva (QM GH5213). Scales: a, $2 \mathrm{~mm} ; \mathbf{b}, \mathbf{c}, 0.5 \mathrm{~mm} ; \mathbf{d}, 0.2 \mathrm{~mm}$.

The larvae resemble those of Aplidium opacum with a band of numerous epidermal vesicles along each side of the median adhesive organs, similar numbers of stomach folds, and a similar large atrial lip. The form of the colonies and systems differ from these of the present species, and the zooids have fewer rows of stigmata.

Aplidium griseum n-sp.

(Fig. 80)

Distribution

TYPE LOCALITY: Queensland (Heron I., under rubble. near reef edge, low tide, coll. P. Kolt May 1985, holotype QM GH5212; May 1985, 1987, paratypes QM GH5214 GH5215).
Further Records: Queensland (Capricorn Group, QM GH5171-3 GH5213 GH5216-7 GH5529-31 GH5613 GH5668).

DESCRIPTION

External Appearance: The colonies are small, upright (to 1.0 cm high), almost cylindrical (to 1 cm diameter), flat-topped lobes. Embedded sand is crowded in the lower half of the lobe and becomes less crowded in the top half. Sand is present also on a ridge around the periphery of the upper surface of each lobe, and is crowded into a line around each system where the branchial apcrtures open at the base of marginal ridges. As well as the peripheral ridge around the upper surface of each lobe the marginal ridges are on the upper surface separating the systems from one another. The thin threadlike zooids are in irregular or circular systems around 2 or 3 sessile common cloacal apertures on the upper surface of cach lobe. Radial extensions from the peripheral test extend in toward the centre of a system and have zooids along each side. The regular circles of zooids are thus interrupted and the number of zooids in a system is increased.

Living colonies are 'Indian-', or 'prune purple' to 'blackish' or 'light translucent lavender', or 'Prouts brown' extemally and "poppy red" internally. Zooids are "vermilion' (see Ridgeway 1886). In life, red pigment in the atrial lips can be seen through the translucent test. The preseryative sometimes is stained reddish-orange. Brown spherical cells are in the test of preserved specimens,
internal Structure: The delicate zooids have fine longitudinal muscles extending their whole length. The branchial lobes are rounded and petal-shaped. The atrial lip from the body wall anterior to the small rounded aperture is
narrow and pointed. Opaque brown pigment particles are around the zooid openings and along the endostyle. These particles probably cause the red colour in the living zooids. The thorax, is longer than the abdomen with 13 rows of up to 16 stigmata per row. The small stomach in the middee of the abdomen has 8 or 9 deep folds in its wall. Of these 2 or 3 do not extend the whole length of the stomach. Caeca at the proximal end of the rectum form a rectal valve.

The posterior abdomen is long and thin, with an anterior ovary and double row of male follicles in its posteriot two-thirds.
In specimens collected in May, a tailed larva and a second less advanced embryo are in the atrial cavity. The larval trunk is 0.85 mm long, with small, pointed median ampullae in each interspace between the 3 adhesive organs. The whole anterior end of the trunk is obscured by an arc of seattered epidermal vesicles in the larval test along each side of the mid-line.

Remarks

The species is distinguished by its upright colonies, small stomach with 8 folds in the stomach wall, relatively wide thoraces with numerous (16) stigmata per row, and delicate musculature in the body wall.
Incomplete stomach folds that do not extend the full Jength of the stomach are known in other species of this genus e.g. Aplidium multipapillatum Millar, 1975. The latter species also has a similar number of stigmata in each row, but it has more stomach folds than the present species, Colonies resemble those of Aplidium craterif. erum and A. clivasum, with systems opening into depressions on the surface of the robust colonies. However, the present species has more stomach folds.
The larva is like that of Aplidium ritteri with scatered vesicles around the anterior end, although the munk of the present species is larger.

Aplidium incubatum n.sp.

(Fig-81)

Distribution

Type Locality: Queensland (Point Lookout, in crevices on rocky platform, high lide, coll.P. Kott [2.5.87, holotype QM GH5309; paratypes QM GH5310).
Further Records: Qucensland (Point Lookout, QM GH5311-2; Cape Moreton, QM GH5615).
The records are from 0 to 10 m , from rocky substrates.

DESCRIPTION

External Appearance: The colonies vary in shape from extensive plates up to 2 cm in maximum diameter to upright mushroom-shaped more or less flat-topped lobes (up to 1 cm high). Sometimes the base of the colony is drawn out into a long, flattened extension which fits into narrow crevices and sometimes narrow stolons join the separate lobes of a colony to one another, or function as root-like processes fixing the colony in the substrate. Small circular systems of up to 10 zooids, and 5 mm diameter are crowded in the colony and open on the upper surface. Large, sessile common cloacal apertures are in the centre of each system. The test above the systems is naked, pinkish-white and translucent. Sometimes
sand is on the surface test separating single, or groups of, systems from one another.
Sand also is present on the surface test around the sides and base of the colony and varying amounts are embedded in the test amongst the zooids. The test is firm and transparent in preservative. In life, colonies are pink around the periphery of the systems, or red-orange with orange or salmon coloured zooids.
Internal Structure: The zooids are robust, but the thorax and abdomen together are only about 2 mm long, the thorax slightly longer than the abdomen. The posterior abdomen occupies about half the length of the zooid. The 6 branchial lobes are large and fleshy, with a small, pointed papilla in the centre of each lobe, sometimes

FIG.81.Aplidium incubafumn n.sp, - a, colony (holotype QM GH5309); b, whole zooid (paratype QM GH5310); c, anterior part of zooid with embryos in brood pouch (holotype QM GH5309); d, branchial lobes (paratype QM GH5310); e, larva (holotype QM GH5310). Scales: a, $5 \mathrm{~mm} ; \mathrm{b}-\mathrm{d}, 0.5 \mathrm{~mm} ; \mathrm{e}, 0.2 \mathrm{~mm}$.
slightly depressed into its surface. The atrial lip is produced from the upper rim of the opening and is single or divided into 2 or 3 lobes. Twelve thick, conspicuous muscles are in the thoracic wall and extend the length of the zooid in a narrow band on each side. Broad, rectangular stigmata are in 9 or 10 rows with up to 15 per row.
The stomach has 25 folds in its wall. The nesophagus and post-pyloric part of the descending limb of the gut loop are of moderate length, an ovary is in the anterior part of the abdomen bebind the gut loop, and the male follicles are in a long, irregular and tather loose bunch occupying most of the posterior abdomen.
Zooids of the holotype each have a large brood pouch, constricted off from the postero-dorsal comer of the thorax, with up to 6 embryos in a developmental sequence, lined up in it. The most advanced tailed larva is uppermost. It has a trunk 0.55 mm long, and a tail wound three quarters of the way around it. About 16 epidermal vesicles are in a single arc on each side of the mid-line around the anterior half of the trunk.
A total of 7 epidermal vesicles in the interspace between the upper and muddle adhesive organs branch off 2 commen basal stalks, and 5 branch of 2 basal stalks in the lower interspace.

RFMARKS

A. uteute and the present species have circular systems, a brood pouch and similarly arranged epidermal vesicles. However, the larvae of the present species lack the median vesicles, the zooids have fewer stomach folds and fewer stigmata per row than A. suteute, and the test has embedded sand, which A. uteute does not have. Aplidium ornatum n.sp. has sand around the border of the colony, like the present species, but is distinguished by its more numerous and seattered larval epidermal vesicles and lack of a brood pouch.

Aplidium inflorescens n.sp.
(Fig. 82)

[^7]
DISTRIBUTION

TVFe LocAlity: South Australia (SW Point, Grindal 1n NNE Cape Catastrophe 18 m , coll. L. Hobbs, H. Brandon on RV Ngeria 29.9.89, holotype SAM E2588)
Further Record: Victoria (? Balnaming Beach AMY1401 Kott 1963),

DESCRIPTION

External Appearance: The colony consists of multiple stalked heads branching from a sandy common base. Heads are hemispherical to 2.5 cm diameter, and the thick stalks are of slightly less diameter and up to 1.5 cm long. Sparse sand is embedded in, and is present on the surface of, the stalk, increasing in abundance toward the base. Sand is absent from the head. Zooids are arranged in double rows converging to a few common cloacal apertures on the terminal surface of each lobe.

Internal Structure: The zooids are of moderate length, the thorax and abdomen together being about 4 mm . The posterior abdomen is long and thread-like. The atrial lip is from the anterior rim of the aperture, It is undivided and usually its. median longitudinal muscles are contracted causing the edge to be frilled. Stigmata are in 15 rows with 14 or 15 per row. The oesophagus has a slight prestomach enlargement. The stomach wall has 20 folds.

Up to 4 embryos are crowded in the atrial caviry of the type specimen. In the contracted zooid this causes the dorsal surface to protrude. Larvae are large, the trunk almost 0.9 mm long, with median and lateral ampullae alternating with the adhesive organs. There are no epidermal vesicles.

REMARKS

The colony of this species with its thick basal stalks and longitudinal tows of zooids converging to terminal cloacal apestures, resembles Aplidium geminatum, which also has a similar number of stomach folds, and is recorded from South Australian waters. The present species lacks the layer of external sand characteristic of A. geminatum, and its stalks are shorter, thicker, more branched and not so wrinkled. Further, the larvae of the present species lack the are of crowded epidermal vesicles found in A. geminatum. They haye, instead, well-formed lateral ampultae.
Aplidium brevilarvacium has similar cloacal systems but the heads ate smaller and sandy, the stalks thinter and longer, and the stomach has only 10 folds, thus is readily distinguished from the present species.

The larvae of the present species ate similar to those of A. coniferunt, which is distinguished by its large undivided upright colony, and its zooids with only 5 stomach folds. Aplidium lodix n.sp, has a similar larya withont vesicles, and with median and lateral ampullae, but its colonies are extensive and investing with branching rows of

zooids converging to the randomly distributed common cloacal systems.
The colony assigned to A. opacum by Kott (1963) is in vegctative condition, and although the colony resembles that of the present species, zooids are not available to confirm its identity.

Aplidium jacksoni Kott, 1963
(Fig. 83)
Aplldium jacksoni Kott. 1963, p. 110 (part, holotype).

Distribution

New Records: Nonc.
Previously Recorded: New South Wales (Port Jackson - AM U3917 Kot 1963).

DESCRTPTION

External Appearance: The colony is a circular slab, about 12 cm diameter and 2 cm thick. Sand is embedded thickly in the surface layer of test, but is not present externally adhering to the outer surface. Sand is sparse in the lower half of the colony, Circular cloacal spaces are just below the surface, covered over by a thin layce of test, and with large, imegular, sessile cloacal apertures in the centre. Zooids are in wide cireles of about 8 to 12 surrounding the cloacal cavities. Each branchial aperture opens on or inside a small upstanding papilla, which has one or more of the ventral branchial lobes embedded in it.
Internal Structure: The zooids are robust, with a short thorax and a long posterior abdomen. The atrial aperture has a small pointed lip from the upper border of the apening, Branchial lobes are small and pointed. Stigmata are in 12 rows of 16. The wide stomach is retatively short with about 12 regular, parallel longitudinal folds. Two rows of male follieles are in the long, robust posterior abdomen. Larvae are not known.

Remarks

Although it is not impossible that A. jacksoni occurs in Bass Strait, a naked, stalked, colony from off Devonport (Tasmania), assigned to this species by Kott (1963), is not conspecific. It is in the vegetative phase, and appears to be a colony of A. coniferum (sec above).

FIG. 82. Aplidium inflorescens n.sp. (holotype SAM E2588) - a. colony; b, thorax showing embryos being incubated; \mathbf{c}. larva. Scales: a, $2 \mathrm{~cm} ; \mathbf{b}, 0.5 \mathrm{~mm}$: c, 0.2 mm .

The present species is characterised by its distinct circular systerns, with the position of the branchial openings indicated by a papilla on the surface of the colnny. The zooids have some characters in common with A. triggsense which, however, has more crowded zooids and sand embedded in the basal layer of test rather than the surface.

FIG. 83. Aplidium jacksomi (holotype AM U3917) a, surface of part of colony showing large sessile common cloacal apertures surrounded by the branchial apertures on small papillac; h, zooid. Scales: a, $5 \mathrm{~mm} ;$ b, 0.5 mm .

Aplidium lenticulum n,sp.
 (Fig. 84. Plate 13d-f)

DISTRIBUTION

TYPE LOCALITY: Queensland (IJeron J. under coral slab 3m, coll. N. Coleman 26.11.74 AMPI 141, holotype QM GH5060. Heron L., coll. P. Fredrickson May 1975, paratype QM GIJ5061.
Further Records: Western Ausstralia (Camac I., QM G9475; Rockingham, QM GH5457). South Australia (Topgallant I, QM GH941). Queensland (Capricorn Group QM GH1497).

DESCRIPTION

External Appearance: The colonies are tobust sheets or slabs up to 20 cm in maximum cxtent and to 2 cm thick. The upper surface is divided into flat-topped, circular, oval or polygnnal zooid-free elevations of varying diameter up 101 cm . These are scparated Irom one another by narrow depressions. In the base of each depressinn is the thin layer of test forming the roof of the common cloacal canals. The zooids open along each side of these common cloracal canals in the angle between the base and sides of the depression. The ventral surface of each zooid is in the solid test beneath each elcvated area, atrial apertures are in the base or sides of the cloacal canals and atrial lips are in the test above the canals. Sand is packed in the lower half of the colony and around the outer margin, but the upper half of the colony is completely or partially free of sand.
The sand occasionally spreads from the lower half of the colony into the test around the zooids and above them, into the outer margin of each clevation, thus protecting the branchial openings. Sometimes some small clumps of sand are scattered in the surface of each elevation and these may also be present in small papillae projecting from the upper surface. The sand is also oceasionally present in the surface test above the cloacal canals, and around the large common cloacal apertures which appear to occur fandomly at the junctions of cloacal canals. The cloacal apertures are conspicuous, projecting from the surface of the colony. with a large cloacal chamber bencath them. Brownish oval bodies (about 0.1 mm long) are in the icst especially crowded around the cloacal canals, in their base, walls and roof. They become more sparse toward the base of the colony. These contain granular material, but they do not appear to be faecal pellets.
In life colonies are said to have been black, greenish-black, red, aqua-blue (South Australian
specimens) translucent gels, although all photographed specimens appear to be cream and red.
Internal Structure: Zooids are robust. The thorax and abdomen are together about 3 mm long, and of about equal length, but the posterior abdomen is at least twice the length of the rest of the zooid.
The branchial siphon is long with a large sphincter around the base of the lobes. Fine longitudinal musele bands number aboul 12 on the thorax. The atrial lip arises from the body wall opposite the first row of stigmata, and the atrial siphon surrounded by a sphincter muscle, is opposite the fifth or sixth row. The tip of the atrial lip is invariably entire and pointed. The atrial lip is particularly long and broad. Zooids located in the vjeinity of a cloacal aperture have their atrial lips inserted into the test around the rim of the opening.

An extent of unperforated pharynx is between the tentacular ring and the first row of stigmata. Also, bands of unperforated pharynx lie along each side of the endostyle, the perforated part being a relativcly narrow part of the dorsum of the pharynx. Stigmata are in 16 to 20 rows of up to 8 per row.
The stomach has 5 folds although when inflated only slight anterior and posterior protrusions remain.
The posterior abdomen is long and thin, the test follicles in one or 2 series are usually separated from the posterior end of the abdomen by an interval of various lengths. The ovary is at the anterior end of the male follicles. It increases in size as it moves up into the atrial cavity from 0.7 to 1 mm . It is a long, pointed, egg-shape, rounded at one end and tapering to a blunt point at the other. Embryos are present in the atrial cavities of specimens from Rockingham (collected in

FIG. 84. Aplidium lenticulum (paratype QM GH5067) - a, part of colony surface; \boldsymbol{b}, zowid. Scales: a, 5 mm ; \mathbf{b}, 1 mm .

March). Tailed larvae are in a Heron I. specimen collected in May (QM GH5061). They have median ampullae altemating with the adhesive organs, and a mass of epidermal vesicles obscuring the anterior end of the 1 mm trunk. Only one embryo is incubated at a time in the posterior half of the atrial cavity.

Remarks

As well as the narmow zooids with long thoraoes, long branchial apertures and atrial siphons separated from the atrial lip by 3 or 4 rows of stigmata, the gelatinous, flat-topped elevations on the surface, surrounded by the cloacal canals and zooid openings, are characteristic.

The specjes is the opposite of such species as A. clivosum and A. linacratum nom, nov, which, although they have similar zooids, have zooidfree surface elevations of the test that surround the systems rather than being surrounded by the systems as in the present species.
A line of sand outlines the zooid-free areas of test where the branchial apertures open to the surface also in Aplidium tabascum n.sp., although in the present species the sand grains in the margins of the elevated areas form a crowded band rather than a single line. Also the cloacal cavities of A. tabascum are more extensive, and the atrial lip is from the rim of the aperture and not separate from it as it is in the present species. Aplidium solidum has similar, though smaller systems. more embedded sand, and a different zooid.

The surface elevations and similar systems are found also in A. cellis Monniot 1987 from New Caledonia but its atrial lip is not separate from the opening, and the larvae of the 2 species differ.
Aplidium caelestis has similar zooids and oval bodies embedded in the surface test as the present species. However it long, crowded meandering systems separated by long, thin ridges, rather than the circular double rows surrounding polygonal areas, and the sandy colonies with surface as well as embedded sand, distinguish it.

The nature and role of the oval bodies is not known, although it is possible that they have sometimes been mistaken for faecal pellets (see A. caelestis, above).

Aplidium lodix n.sp.
(Fig. 85)
Distribution
Type Locality: Victoria (Western Port, Crawlish Rock, coll. J.E. Watson 14.11.78, holoytpe QM G12712).

Furtherk Record: South Australia (Perforated I., QM GH4144).

DESCRIPTION

External Appearance: The colony is a large sheet investing pebbles on an isregular substratc. It is uneven in thickness from 0.5 to 1 cm . The maximum dimension of the colony is 6 cm , and it is irregularly indented and lobed around the margin and smooth and even on the upper surface, The test is firm and translucent, without sand on the upper surface, although there is some on the base. There is no embedded sand. Moderatcly crowded zooids are arranged in circular to stellate systems, In preservative it is greyish, with whitish zooids.
Internal Structure: Zooids are robust, to 6 mm in length, with thorax, abdomen and postenor abdomen each about one third of the total length. The 6 branchial lobes are conspicuous and rounded. The alrial tongue arises from the anterior rim of the aperture. Numerous stigmata are present in 10 rows, although the exact number was impossible to count. The stomach has about 25 longitudinal, parallel folds.

Up to 6 crowded embryos are incubated in the atrial cavity. Laryae from the holotype have trunks 0.65 to 0.75 mm long, with the tail wound balf-way around. Ocellus and otolith are present. A lateral ampulla is on each side of each of the 4 median ampuilae which alternate with the adhesive organs. A ventral median ampulla projects posteriorly, but thete are no epidermal vesicles.

Remariks

Superficially the preserved colony resembles Aplidium opacum. However, the latter species has more crowded zooids amanged in double branching rows, and its larva differs from the present species in having epidermal vesicles and lacking lateral ampullae. Aplidium robusium n.sp. is another temperate species with a similarly shaped and naked colony, circulat systems of varying size, and robust zooids with about 20 stomach folds. It has up to 16 rows of stigmata, jits thorax is longer than that of the present species and its larva has clumps of dorsal and ventrul vesicles which are not present in A. lodix.
Aplidium inflorescens has lateral and median larval ampullae, lacks epidermal vesicles, but is distinguished from the present species by the form of its systems with apical common cloacal apertures,

Aplidium lunacratum nom. nov.
(Fig. 86. Plate 14a-c)
Psammaplidium ordinatum Herdman and Riddell, 1913, p. 885 . Kott, 1963, p. 99.
Not Psammaplidium ordinatum Sluiter, 1906, p. 22.
Not Aplidium ordinatum Sluiter, 1914, p.35. Hartmeyer, 1909-1911, p.1471. Van Name, 1945, p. 46.

DISTRIBUTION

New Records: Western Australia (Cervantes, WAM 237-9.87); South Australia (Great Australian Bight, SAM E2563; Kangaroo I, QM GHS429; Beachport, QM GH5448; Cape Jaffa, SAM E2553 E2560 E2565, QM GH5446). Victoria (Portland Harbour, MV F59370).
Previously Recorded: New South Wales (Manning River - AM G12216 holotype A. ordinatum Herman and Riddell, 1913).
The discontinuity in the records probably refleets collecting effort.

DESCRIPTION

External Appearance: Colonies are irregular sandy mats, or upright wedges and lamellae up to 1 cm thick with zooids opening on both sides, or cylindrical lobes of various sizes arising from common basal test with zooids opening only on the upper surface. Zooids are in evenly spaced circular systems of 5 mm diameter. Branchial apertures are in a circle around the periphery of each system and a circular cloacal cavity is in the centre beneath the naked concavities on the surface of the colony. Crowded and relatively large sand grains adhere to the ridges between the systems, and usually to the outside of the conical common cloacal protuberance that rises from the centre of each surface concavity. A little fine sand is embedded in the naked test in the coneavity around the base of each cloacal protuberance. Radial bands of red pigment from the cloacal aperture to the circumference of each depression are in the surface test. Sand is crowded throughout the remainder of the test. Zooids lie amongst the embedded sand. They are perpendicular at the surface but more posteriorly they cross one another. In thin lamellae or sheet-like colonies they bend at right angles so that the long narrow posterior abdomina extend through the fine sand in the middle layer of each colony lobe toward its point of fixation, or to where it branches off a

FIG. 85. Aplidium lodix n.sp, (holotype G12712) - \mathbf{a}_{1} colony with systems indicated on part of the surface; b, thorax and abdomen; \mathbf{c}, larva. Scales: a, 1 cm ; b, $0.5 \mathrm{~mm} ; \boldsymbol{c}, 0.2 \mathrm{~mm}$.

FJG. 86. Aplidium lunacratum nom. nov. - a, surface of part of colony (QM GH5446); b, cross section through the upper part of a zooid system (diagrammatic); c, thorax and abdomen (QM GH5429); d, extended zooid posterior part of posterior abdomen not shown WAM237.87); e, larval trunk (SAM E2563). Scales: a, 5mm; b-d, imm; e, 0.2 mm .
basal plate. When such lamellae are broken across, the posterior abdomina can sometimes be pulled out in tufts like fine hair-like threads.

Internal Structure: The zooids are muscular and often are contracted, although the posterior abdomen always is relatively long (up to 1 cm or more). When relaxed, the thorax is 3 or 4 nrm long, and the abdomen about half of that length. Dark pigment cells arc in the tip of the atrial siphon and in the branchial siphon of preserved zooids. Longitudinal musculature is strong with about 25 bands on the thorax.
The branchial siphon is short with 6 relatively shallow lobes around the apcrture. It has circular muscles in a wide band along its length, and there is no narrow, bulging sphincter muscle. The atrial tongue is fleshy and pointed to long, wide and strap-like, with parallel longitudinal muscles. It arises from the body wall opposite the first row of stigmata, anterior to the atrial siphon which is opposite the second to third rows. A ring of muscles is around the forward pointing atrial aperture on its short siphon which opens into the base of the cloacal cavity around its outer margin. The prebranchial area between the prepharyngeal band and tentacular ring is wide, as is the imperforate pre-stigmatal and post-stigmatal parts of the pharynx. Also a wide band of unperforated pharyngeal wall is along each side of the endostyle.
Stigmata are in 10 to 15 rows of 12 to 15 per row. The stomach is small with 5 shallow folds, sometimes (if the stomach is flattened or inflated) difficult to distinguish and reduced to longitudinal glandular areas internally. The anal opening is opposite the seventh row of stigmata. Spherical to oval male follicles are in a long single or double series in the middle third of the long posterior abdomen. The ovary is just anterior to the testis follicles.
A single embryo is in the posterior half of the atrial cavity of specimens collected in January (SAM E2563). The larval trunk is 2.2 mm long, more or less cigar-shaped, with the ocellus and otolith near its posterior end. Two median ampullae, one in each interspace, alternate with the adhesive organs. The anterior end of the trunk is obscured by numerous ectodermal vesicles that extend in bands, one along each side of the ventral and dorsal mid-lines from outside the base of the ventral and dorsal adhesive organs, respectively. The larva is pigmented red and is opaque.

REMARKS

Like Synoicum castellatum, the present species has large circular sytems, protruding cloacal apertures, atrial lips separate from the apertures, stomach folds flattened, and occasionally the stomach in the 'atopogaster' condition - with horizontal folds. However the internal glandular areas are all parallel and longitudinal and none are irregular as they are in the large stomach of S. castellatum. The present species also has close similarities with other Aplidium spp. It has the same long larval trunk (in the vicinity of 2 mm) and a long narrow zooid with the atrial lip separate from the opening as in A. crateriferum and A. clivosum but it lacks their narrow, bulging branchial sphincters, has fewer rows of stigmata, and its systems are smaller.Aplidiun lunacratum has circular systems (as in A. crateriferum) rather than stellate ones (as in A. clivosum).
Despite the circular systems of the present species being different from those of the sympatric A. clivosum, in which the double rows of zooids converge to the cloacal apertures, preserved colonies are readily confused with one another. Both spccies have naked surface dcpressions with central protuberant cloacal apertures and red test. In both the colony shape varies, and variable quantities of sand are on the upper surface. $\ln A$. lunacratum there seems always to be a single system per depression, as in some specimens of A. clivosum (SAM E2564-5). As well as the form of the cloacal systems the present species can be distinguished by its larger zooids, with more muscles, and fewer rows of stigmata but more per row (10 to 14 rows of up to 15). Aplidium acroporum has similar systems but smallcr zooids, with only 5 rows of stigmata, 8 stomach folds and the atrial lip arising from the anterior rim of the aperture. Aplidium protectans has similar circular systems, a large roomy stomach, and larvae with median ampullae and dorsal and ventral vesicles, but its zooids differ in other respects, and its colony is naked and gelatinous.
Examination of the type specimen (AM G12216) of A. ordinatum Herdman and Riddell has shown that previous reports (see Kott 1963) of 8 folds in the stomach wall are incorrect. The zooids are contracted, and some of their details are obscured. Nevertheless, the relatively large stomach is seen to have the characteristic 5 shallow folds, the atrial aperture is on a short siphon just posterior to the muscular atrial lip, and each protuberant common cloacal aperture, in the centre of a circle of zooids, has sand embedded in it.

The name Aplidium ordinatum is a junior secondary homonym of Psammkuplidium ordinatum Sluiter, 1906 (sce also Van Name 1945) from the Antarctic and the name Aplidium lunacratum nort. nov. is accordingly proposed for this species.

Aplidium macrolobatum n.sp.

(Fig. 87)
Aplidium Lobatum: Kott, 1963, p. 97 (part, colonies from Heron I. and Sarina).

DISTRIBUUTION

Type Locality: Queensland (Hcron 1., north easi, low tide on under surface or rubble, outer edge of recf, coll. P. Kott 2.11.86, holotype QM GH5169; 14.11.85, paratype QM GH5170).
Further Records: Queensland (Capricom Group, AM Y1404, QM GH5166-8 GH5219 GH5276 GH5526 GH5544-9 GH5595-6 GH5606-7 GH5660 GH5663; Britomart Reel, QM GH380; Sarina - AM Y1445 Kott 1963; Lizard L., QM GH5550-1).

One colony from Heron I. (QM GH5663) was found on a small crab.

Description

EXTERNAL APPEARANCE: The colonics are investing sheets up to 0.5 cm thick, or irregular masses with the upper surface and margin extending into rounded or flattened lobes. Sand is embedded throughout the lest, although often it is relatively sparse and the colonies are predominantly gelatinous. Sand is less crowded intemally than just below the surface, and is absent from the smooth outer surface of the colony. Branchial apertures on the upper surface have each of the 6 large triangular branchial lobes outlitied in fine sand grains. The cloacal apertures are large, sessile or protruding from the surface. They vary in size and shape, some being irregular openings but others regular and circular and often they are particularly extensive long or crescent-shaped openings exposing an extent of the cloacal cavity or canal directly to the exterior.
The systems are either cincular, oocasionally separated from one another by slight depressions in the surface test (holotype); but in other colonies crowded double rows of zooids converge to irregular and randomly scattered cloacal apertures. In several well developed colonies (QM GH380, AM Y1445) the common cloacal apertures are along the upper rim of flattened colony lobes and double rows of zooids extend down each side of the lobes, almost paralle! to one arother. The test
usually is firm, gelatinous and occasionally glassy in preservative.
In life the colony is cloudy, owing to the embedded sand. When living the thoracic body walls of the zooids are mauve, purple, raspberry, 'pink', 'hazel', 'rose-red', or 'ruby' (Ridgeway 1886) but other parts of the zooids are colourless. Colonies, with pink or red colour seen through the embedded sand, have been described as thirkish delight', 'pink lozenge' or 'pomegranate'. Zooids are pale pink in preservative.
Prochlaron is on the surface of some colonlies and often large red and green spherical algal cells. 0.1 to 0.2 mm in diameter are in the test between and around the zooids and in the floor of the cloacal cavities especially when these are exposed to the exterior (QM GH380 GH5606 GH5660 AM Y1445).
Internal Structure: Zooids are small, 2 mm long when contracted, the thorax and abdomen of about equal length and the posterior abdomen slightly shorter. Branchial lobes are large iriangles with a narrow muscle band in the centre of each lobe, reaching to its pointod tip. The atrial lip from the upper rim of the opening is exceptionally large, and is divided into 3 to 5 long, pointed or straight-edged, leaf-like lobes with a narrow strap-like band of muscle fibres in the centre of each lobe. Both atrial and branchial lobes have a similar pointed tip into which the central muscle band is inserted, This tip sometimes appears as a pointed papilla projecting from the end of the lobe. When the muscles in it are contracted it is drawn back into the lobe, subdividing its terminal tip into 2.
Six to 10 strong longitudinal muscles are on the thorax of contracted specimens. These continue along the abdomen and posterior abdomen in 2 strong ventral bands. Nine or 10 rows of up to 15 stigmata per row are in the branchial sac, Stigmata are long and narrow, and are folded up when the delicate thorax is contracted.
The stomach wall has 5 deep folds. Sometimes the posterior abdomen is short, with up to 10 or more peat-shaped male follicles bunched in ii. In other zooids, apparently in the female phase, a 3 to 10 -egg ovary is about halfway down a long posterior abdomen, possibly after the testis follicles are spent (holotype). Male and female gonads are never present in the one zooid at the same time.
Up 107 eggs and embryos are packed in the atrial cavily of the holotype and other colonies collected in August and November. The most advanced embryo is anterior. The larval trunk is

0.55 to 0.75 mm long, the length increasing with maturity. A well developed ocellus and otolith are int the cerebral vesicle. Clusters of epidernal vesicles branch off the median ampullae that alternate with the 3 small, stalked adhesive organs. A band of small ectodermal vesicles is along each side of the adhesive organs, Further vesicles contrict off from posteriorly projecting stalks part of the way along the dorsal and ventral borders behind the adhesive organs on each side of the median line.
As the larvae mature, zooids degenerate and their remains persist as brood sacs in the test, each incubating one or 2 larvae.

Remarks

The unusually large and lobed atrial lip, large branchial lobes, red body wall, and short posterior abdomen, with only male or female gonads present at a time, characterise this fleshy species which also contains variable amounts of embedded sand. A similar leaf-like atrial lip is known in the temperate species, Aplidium elatum Kot, 1972b. However, the latter species forms upright fat-shaped lamellae, has 8 rows of stigmata with only 8 per row and 15 stomach folds rather than the 5 of the present species. Aplidium opacum also has large lobes around the apertures, with muscle bands along the centre of each which sometimes subdivide the branchial lobes and crinkle the edges of the atrial ones. It is distinguished by its more numerous stomach folds and naked colonies without embedded sand.
Aplidium lobatum Savigny, 1816 from the Bay of Suez and Indonesia (see Michaelsen 1920) has a similar number of stigmata, stomach folds and a tripartite attrial tongue from the upper border of the opening. Like the present species, A. Iobatum has a shote posterior abdomen and only the male or female gonad present at one time. However, the colonies of A. lobatum have flat-topped oval areas separated by furrows into which the zooids open, and the species does not appear to be conspecific with the present one. Aplidium tremidum: Sluiter, 1909, proposed as a junior synonym of A Iobatum, has a shott atrial lip. Thus, although Michaelsen (1920) may have been wrong in proposing the synonymy of A. lobarum and A. tre-
mulum apparently neither are conspecific with the present species.
The degenerate zooids acting as brood pouches in the test, appear to be characteristic of the present species.

Aplidium magnilarvum n.sp.
(Fig. 88)

Distribution

TYPE LOCALITY: Westem Australia (115 nautical mls SW Eucta $38^{\circ} 17^{\prime} \mathrm{S}, 129^{\circ} 37^{\prime} \mathrm{E}, 180 \mathrm{~m}$, coll. W. Zcidler and K. Gowlett Holmes 16,1.89, holotype SAM E2582, paratype SAM E2583).
Further Record: Westem Ausiralia (SSW Eucla, SAM E2590).
The species has been taken from the same general area at 180 to 190 m depth.

DESCRIPTION

External Appearance: Colonics are hard, upright, round-topped, about 4 cm bigh and $2-3 \mathrm{~cm}$ maximum diameter, narrowing toward the base where an aggregate of root-like projections of the test form a holdfast. Sand is not so crowded internally as it is on the surface around the sides and roots of the colony where it adheres to the test to form a thick layer. The sand layer is thinner toward the upper surface.

The surface sand obscures the systems, and their form was not determined. In between the sand particles, the test is firm and glassy, sometimes with some brown pigment cells.

Internal Structure: The zooids in the availabile material are entering the vegetative phase with trophocytes accumulating in the abdomen, and the thoraces disintegrating, Only in the holotype are there adult organs persisting in the $20-$ oids. In some of these zooids a single large embryo is incubated in the atrial cavity, although none of these appears to have any larval organs developed.

In these zooids, the thorax (contracted) and abdomen together are up to 4 mm . The thorax is muscular with about 15 longitudinal muscles ronning the length of the zooid, forming a wide band along the ventral border of the abdomen and posterior abdomen. The circular atrial apesture is

FIG. 87. Aplidium macrolobalum n.sp, - a, colony (QM GH5545); b, upper surface showing circular systerns. and large, irregular, sessile cloacal apertures (holotype QM GH5169); c, upper surface showing elongate systems with long, open cloacal apertures and embedded symbionts (QM GH5606); d, showing branchial lobes. outlined in sand grains (QM GH5167): e, f, zooids showing shon, contracted posterior abdomina with testis follicles and oocyles respectively (QM GH5167, holotype GH5169); g, portion of branchial sac (QM GH5314); h, thorax showing embryos being incubated (holotype QM GH5169); i, embryo being brooded in thorax of degencrating zooid (QM GH5526); j, k, larvac (QM GH5315). Scales: a-c, $5 \mathrm{~mm} ; \mathrm{d}-\mathrm{i}, \mathbf{0} .5 \mathrm{~mm} ;$, $, \mathbf{k}, 0.2 \mathrm{~mm}$.

antero-dorsal, directed anteriorly, with a muscular atrial lip arising from the hody wall just in front of it. The atrial lip either is undivided or it has 2 additional points on each side of the longer median one.
Stigmata are in 21 long rows. The thoraces are wide and robust, and appear to have at least 20 stigmata per row, alhough the exact number was not determined. The oesophagus is relatively long, and the long clliptical prestomach oceupies most of its length. The stomach is short and has 5 deep folds. The post pylorie part of the gut has a posterior stomach, and proximal and distal parts of the mid-intestine. There are short rectal caeea. The gut is narrow in these specimens, however, and probably is not functional.
The large embryo completely filling the atrial cavity in some of the holotype zooids is up to 2 mm long.

REMARKS

These small, upright bulbous colonies, with their basal holdfasts are unique, distinguished from A. coniferum by their hard, sandy consistency, the single large embryo in the atrial cavity, and more numerous stigmata in each row. This new species may be confined to locations at more than 100 m depth on the southern continental shelf.

Aplidium minisculum n.sp.

(Fig, 89a,h)
Aplidium depressum: Kott 1976, p.60.

DISTRIBUTION

Type Locality: Victorial (Portsea Picr, 2m, Panel 7-2 coll. G. Russ 24.2.76, holotype QM G11920). Firther Record: Victoria (Westernport - Koll 1976).

DESCRITTION

EXIERNAL APPEARANCE: Colonies are soft. jelly-like flat-topped cushions to more extensive sheets lobed on the upper surface. They are found on stalks and fronds of weed. The holotype is from an experimental fouling panel. Zooids are in circular to elongate systems, and are clearly seen through the transparent but slightly brownish test. Their arrangement often is obscure in preserved

FIG. 88. Aplidium magnilarvum n.sp. - a, b, colonies (holotype SAM E2582, E2590); c, thorax and abdomen showing embryo being incubated in atrial cavity (SAM E2590). Scales: a b, Icm: c. 0.5 mm .
material. Sand particles are embedded in the test, but are not crowded.
Internal Structure: Zooids are small, to about 3 mm , of which the thorax and abdomen are about half. The small, terminal branchial aperture has 6 pointed lobes, and the small atrial aperture has a single, short, pointed lip projecting out from
the upper rim of the opening. Five rows of 10 to 12 stigmata are in the pharynx. The gut loop is short, with a small stomach with 10 deep folds in its wall. An oval posterior stomach is at the posterior end of the descending limb of the gut loop. A large rectal valve is present at the junction of the mid-intestine and rectum (at the base of the

FIG. 89.Aplidium minisculum n.sp (holotype QM G11920)-a, zooid with embryo in atrial cavity; b, larva Aplidium multilineatum n.sp. - c, colony (holotype AM U3954); d, zooid (holotype AM U3954); e, larva (A. flavolineatum: Kott 1963 Cape Vlamingh, Rottnest I.). Scales: a, d, $0.5 \mathrm{~mm} ; \mathbf{b}, 0.1 \mathrm{~mm} ; \mathbf{c}, 5 \mathrm{~mm} ; \mathbf{e}, 0.2 \mathrm{~mm}$.
ascending limb of the gut loop). The short posterior abdomen has a 2 or 3 egg ovary anterior to an irregular double row of male follicles.
In the holotype colony a single larva is in the atrial cavity, causing the short thorax to be almost spherical. These zooids also have mature male follicles, sperm in the vas deferens and some small oocytcs in the ovary.
Larvae are almost spherical with a double row of ectodermal vesicles along each side of the median short-stalked adhesive organs, 3 rows of stigmata and large conspicuous test cclls in the larval test. These test cells are absent from the anterior end of the larval trunk and become more crowded posteriorly. The larval trunk is about 0.4 mm long.

REMARKS

Kott (1976) assigned the specimens from Westemport Bay to A. depressum on the basis of their similar colonies, small zooids, and similar numbers of rows of stigmata, numbers per row and numbers of stomach folds. Although there are similar test cells in the larval test, the larvae of A. depressum are smaller than those of the present specics and have only a single row of 7 or 8 vesicles along each side of the adhesive organs. The zooids of A. minisculum also differ from those of A. depressum in the presencc of an atrial lip.

Aplidium multilineatum n.sp.

 (Fig. 89c-e)Aplidium flavolineatum: Kot1, 1963, p. 5 (part, AM U3954, ? AM U3955).

Distribution

Type Locality: Western Australia (Rotinest 1., Salmon Bay, inner pool, low tide, coll. P. Kott 18.11.51, holotype AM U3954).

Further Records: Western Australia (? Cape Vlamingh, Rottnest I. - Kott 1963). ? Tasmania (Hunter 1. - AM U3955 Kott 1963).

DESCRIPTION

External Appearance: The colony is a flattopped cushion, 1 cm in diameter, with a naked upper surface and a sandy base. Some sand is embedded in the test around the zooids but it is sparsc, and is absent altogether from the surface test in the centre of the circular systems of zooids where large, plain-rimmed common cloacal openings protrude from the surface. The systems are numcrous, about 8 being present in the small
holotype. The tcst is soft and transparent in the preserved colony.
Internal Structure: Zooids are delicate, with a large thorax twice the length of the abdomen and broader as well. The posterior abdomen is long and narrow. Fine longitudinal muscles arc on the thorax. An atrial lip divided into 2 or 3 narrow, pointed branches, arises from the anterior rim of the antero-dorsal atrial aperture. Stigmata are in 10 rows of up to 16 . The stomach is small with about 30 narrow, mostly oblique folds that are interrupted where they mect along lateral, mesial, dorsal, and ventral longitudinal lines which divide the stomach wall into 4 sections. Thc usual duodenum, mid-intestine and posterior stomach are in the descending limb of the gut loop. A rectal valve is at the proximal end of the rectum.

Embryos are not present in the holotype. Slidemounted larvae are available from colonies from Cape Vlamingh (Rottnest I.) and Hunter I. (Tasmania). These were from colonies which, with the present colony, were assigned to A. flavolineatum by Kott (1963). The colony from Hunter I. (AM U3955) appears to have dried out at some time and neither the systems nor the structure of the zooids could be discerned. The specimen from Cape Vlamingh has not been locatcd for reexamination. Thus the identity of thesc larvae cannot be confirmed, and they are only provisionally assigned to the present species - on the assumption that colonies from which they were taken were conspecific with the reexamined colony, viz. the holotype of the present species.

The larvae from both Hunter I. and Cape Vlamingh have a trunk 0.9 mm long, with the tail wound about threc-quarters of the way around it. There are median ampullae alternating with the adhesive organs, and those in the 2 interspaces are each divided into 2. Four lateral ampullae are present on each side of the median line, one near the base of each of the median ones. A trail of epidermal vesicles extends postcriorly from behind the dorsal and ventral median ampullae. A large ocellus and an otolith arc in the cerebral vcsicle.

Remarks

The cushion-like colony with transparent test, and circular systems has some rcsemblance to Aplidium utente, although the zooids and the systems appear larger, and the common cloacal apertures more protuberant. Aplidium uteute also has numerous stomach folds, but they are longitudinal rather than oblique, and it has a widc
thorax with more stigmata than the present species. Larvae of A. uteute with single series of epidermal vesicles around cach side of the median line, and vesicles between the adhesive organs, are completely different from the larvae provisionally assigned to the present species.
Aplidium gastrolineatum has circular systems and oblique stomach folds but the stomach folds are fewer than in the present species, and the thorax is longer with about 16 rows of stigmata. The South African species A. flavolineatum, to which the holotype of the present species was assigned by Kott (1963), has a similar number of stomach folds, but they are not oblique.
The larvae provisionally assigned to the present species have median and lateral ampullae and dorsal and ventral vesicles like those of A. robustum and A. ornatum, but the median ones are subdivided and there are 4 lateral ones rather than only 2 (as in the latter 2 species). Aplidium robustum has a similar colony, but sessile cloacal apertures and fewer stomach folds.

Aplidium multiplicatum Sluiter, 1909
(Fig. 90. Plate 14c-f)
Aplidium multiplicatum Sluiter, 1909, p.101. Tokioka, 1967, p. 35 (part). Kott and Goodbody, 1982, p. 514. Anaroucium multiplicatum: Van Name, 1918, p. 165. Nishikawa, 1984a, p. 112.
Not Aplidium multiplicatum: Millar, 1963, p. 693 (>?). Kott 1963, p. 103.
Not Amaroucium nultiplicatum: Tokioka 1953, p. 180. Nishikawa and Tokioka, 1976, p.379. Nishikawa, 1990, p. 89.
Aplidium opacum Kott, 1963, p. 108 (part, from NSW and SW Australia).
Aplidium flavolineatum: Kott, 1963, p. 105 (part, specimens from NSW and AM U3956 from Rottnest I.); 1972e, p. 246.
Aplidium californicum: Monniot, 1987, p. 518.
?Aplidium multiplicatum: Renganathum and Monniot, 1982, p. 259.

DISTRIBUTION

New Records: Northern Territory (Darwin Hbr., QM GH5361). Western Australia (Cockburn Sound, WAM 46.7222 .75 29.75 143.75 227.82). South Australia (Yorke Peninsula, SAM E2540 E2587; St Vineent Gulf, SAM E2594). Ncw South Wales (Port Hacking QM GH31).Queensland (Caprieorn Group, QM GH1359 GH5108-27 GH5470 GH5218 GH5224 GH5241-2 GH5275 GH5281 GH5532-8 GH5540-1 GH5646; Whitsunday Is, QM GH5366; Lizard 1., QM

GH5539; far northern Grcat Barrier Reef, QM GH5337).
Previously Recorded: Western Australia (Southwestern - AM Y1394 Kott 1963). New South Wales (Jervis Bay - AM Y1439; Port Hacking - AM Y815 Y823 Kott 1972e; Port Jaekson - AM Y1423 U3931 U3956 Kott 1963). Kiribati and the Palau Is (Tokioka 1967); Phillipines (Van Name 1918); Truk and Ponape Is, Majuro Atoll (Nishikawa 1984a). Hong Kong (Kott and Goodbody 1982).
Despite confusion in the derinition of this species which resulted in its being placed in synonymy with castern Pacific and S. African species, the range appcars to be Indo-West Pacific. It is especially common in tropical, usually reefal, habitats of the western Pacific. It extends into the temperate waters of south-western Australia, but not across the southern coast of the continent.

DESCRIPTION

External Appearance: The spccies forms cushion- or plate-to spreading sheet-like colonies, to 7 cm in maximum dimension and 1 cm thick, with irregular borders. The upper surface is often even and horizontal. A colony from the Great Barrier Reef (QM GH5470) is a glassy dome, 6 cm high, with the surface dceply divided into lobes of varying size and shape; and the specimen from Darwin Harbour (QM GH5361) has the upper surface raised into high, zooid-free round ridges between the doublc rows of zooids. In other parts of the colony, however, systems are more crowded. Zooids are crowded, along each side of canals that converge to a few large, sessile common cloacal aperturcs with irregular borders. The living specimens have translucent, slightly cloudy test coloured orange, palc apricot, 'poppy red', 'salmon' 'pinkish buff, 'ycllow-buff', 'cream-buff' (Ridgeway, 1886). Zooids are crimson, 'scarlct vermilion', 'geranium red', 'scarlct', 'ruby', 'coral reef' (Ridgeway loc. cit.) brilliant or bright orange, or pink. When cmbryos are present they arc a dark maroon colour. In preservative the test is translucent but cloudy, cream with pink zooids and mature eggs and embryos (but not tailed larvac) are a translucent brownish colour. Opaque white (possibly blood) cells are in the sheath of soft test around the zooids, and are crowded together to form a white band around the branchial siphon. The test is particularly soft, jelly-like, is easily torn, and the surface is smooth.
In some colonies green Prochloron cells and diatoms are in the common cloacal cavity, in the canals converging to them and on the outer surface of the colony. The species is onc of the 5 or

6 Aplidium spp. which sometimes have Prochloron in the cloacal cavity (see Kott el al. 1984: Aplidium sp.3).

Internal Structure: Zooids are small, the contracted thorax and abdomen together being about 2 mm long. The posterior abdomen is shorl (about one-third of the total zooid length). The opaque white corpuscles that are such a feature of this species are in the body wall of the pharynx and atrial lip as well as around the base of the branchial siphon, and in the test around the zooid. The body wall is delicate with about 12 line longitudinal muscle bands. Transverse muscle fibres are in the transverse vessels berwen the rows of stigmata.

The 6 branchial lobes are variable, but they usually are long, and are either pointed or rounded. The atrial lip, from the upper rim of the opening contains longitudinal muscles and is of various lengths. Its tip either is pointed and undivided, or is divided into 3 or 4 separate points. There are 9 to 11 rows of 14 to 20 stigmata. Twenty-two longitudinal folds are in the wall of the small stomach which is about halfway down the abdomen. The stomach folds are sometimes irregular, interrupted, and slightly oblique on the outside or ventral border of the stomach, but elsewhere they are longitudinal and parallel.

Bunched testis follicles occupy about threequarters of the length, of the posterior abdomen, leaving the anterior quarter free of malc follicles. In relaxed zooids the follicles are spread out into 2 irregular rows. A small ovary is behind the gut loop, anterior to the testis. Up to 2 embryos are in the atrial cavity of zooids collected in August from Darwin, May from the northern Great Barrier Reef, October from the Whitsunday Is, and January, April, May, August, October and November from the Capricorn Group. Some specimens from Port Hacking (AM Y815) have up to 3 embryos packed into the atrial cavity of specimens collected in Junc. When zooids are particularly contracted the embryos project out from the body wall in what could be mistaken for a brood pouch. The larval trunk is up to 0.9 mm long, and the tail is wound about two-thirds of the distance around it. On each side of the 3 median adhesive organs, is a single are of up to 30 large epidermal vesicles. Small conical median ampullae alternate with the adhesive organs in all except some of the smaller (0.6 to 0.7 mm long trunk) and almost spherical larvae from the Capricom Group, which
also have fewer (14 to 20 rather that 20 to 30) epidermal vesicles in each lateral arc. The same opaque white corpuscles are in the larval test as those in the test sheath around the zooids, and in a band arcound the branchial siphon. These sometimes obscure the larval organs, especially those at the anterior end of the trunk.

Rbmarks

The characteristic of this species are the oppaque white corpuscles clustered around the branchial siphon and the zooid, and scattered in the cloudy, soft gelatimous test, as well as long, double row systems, numerous stomach folds, the moderately wide thoraces (with up to 16 stigmata per row), and larvae with lateral arcs of numerous (14 to 30) epidermal vesicles.
The discrepancy in larval size, and in the number of epidermal vesicles, between smaller almost spherical larver from the Capricom Group and the larger ones from the same as well as all other locations is puzzling. The only other difference observed is in the size (and probably the age) of the colonies. These Capricom Group specimens, taken at low tide from rubble near the edge of the reef, are smaller than the colonies taken from other locations by SCUBA divers.
Sluiter's type specimens of A. mudtiplicanom are irregularly lobed plates 3 cm in maximum diameter and 5 to 6 mm thick, glassy and transparent, with the yellowish-white zooids showing through the test. Systems were not identified. Sluiter records delicate muscles, 7 rows of 10 stigmata, 18 longitudinal stomach folds and a short posterior abdomen with bunched mate follicles.
Van Name (1918) reported larger specimens from the Philippines with more complex systems and 7 to 10 rows of up to 16 stigmata per row, with the sume number of stomach folds ($18-20$) and double series of testis follicles. As in specimens of this and other species, the arrangement of the gonads and the length of the posterior abdomen changes with development of the zonid and with its state of contraction.
Aplidium muftiplicatum: Kott, 1963 came from 2 locations in Queensland. Zooids from both Iocations are smaller than those of A. multiplicathom with only 6 or 7 rows of stigmata. Colonies from Sarina (AM Y1448) are specimens of Aplidium fiuorescum. The colonies from Currumbins (AM U3994), with a layer-of sand on the surface,

FIG. 90. Aplidum multiplicatum - a, part of small colony, indicatine zowids nong each side or the clomaz Lamals which converge to the common cloacal apertures (QM GH5113): b, zooid (QM GH5110), c, stoniach, showing interrupted folds; d, larva (QM GH5361), Scales: a, 2mm; b, 1mm; c, 0,5mm; d, $0,2 \mathrm{~mm}$.
appear to be colonies of A. ornatum with circular systems and sand around the margin of the colony. Aplidium mudfiplicatum; Millar, 1963 is also wrongly assigned, The 3 specimens have circular systems, about 25 stigmata per row and 21 stomach folds. The larvae have lateral ampullae but no vesicles. It is possible that more than one species is involved. The number of rows of stigmata and number per row suggest A, ufeute is one of the species, but the larvae and the number of stomach folds do not support that view.
Specimens assigned to A. multiplicatum by Tokioka (1967) also may include more than one species. In specimens only 2.0 cm in maximum dimension, and not more than Icm thick, there are some with circular, and others with more complex systems, a range of colours from 'pale brown', 'reddish brown', to 'purplish brown' (Tokioka 1967), 7 to 10 rows of stigmata, 10 stigmata per row (in zooids from Kiribati) up to 30 (larger zooids from Palau Iss), and 20 to 35 stomach folds. The range in these characters is greater than could be regarded as intraspecific variation and greater than could be regarded as the effects of growth, especially when the tange in colony size is relatively small. The laryae of the small colony from Kiribati, and the zooids figured from both Kiribati and the Palau Is (Tokioka 1967, Figs 8a-d, 9a, b) appear to be A. multiplicatum. Colonies with more numerous stigmata and stomach folds could be other species such as A. uteute, which resembles the present species in the colour of its zooids and embryos. However, A. uteute has median as well as lateral larval epidermal vesicles, more stigmata in each row and more stomach folds than A. mulhiplicatum.

Nishikawa and Tokioka (1976), Nishikuwa (1990), Tokioka (1953) and Rho (1975) have assigned specimers from Japanese waters with 7 to 11 rows of stigmata, and 20 to 25 stomach folds to A. multiplicatum. The number of stigmata per Tow, and the arrangement of laryal epidermal vesicles and ampullae do not fall within the ranges recorded for the present western Pacific species.
Tokioka (1953, 1967) proposed that the eastern Pacific Aplidiun cadifornicum (Ritter and Forsyth, 1917) is a synonym of the present species. However, the Californian species has sand embedded in the test, an atrial lip separate from the opening, fewerstigmata per row, and lacks the characteristics pigmentation of the present species (see Kott and Goodbody 1982, Nakauchi 1987, Millar 1988). Aplidium californicum: Monniot, 1987 from New Caledonia has the char-
acteristic naked colony, pigmentation, stomach wall, branchial sac and larval form of A. multiplicatum.
In Australia Aplidium opacum is the species most closely related to the present one and specimens have been confused. It has similar colonies with crowded zooids in Iong branching doublerow systems. Zooids are sheathed in a layer of soft test containing opaque white cells which are similar to those in A. mudtiplicatum, and are crowded around the branchial siphon in much the same way, The zooids also are similar, although the present species usually has more stigmata per row but fewer rows than A. opacian. Aplidium opracum has firmer test, and the larvae have long finger-like median ampullae that project between the adhesive organs, as well as a band of numerous lateral vesicles (rather than the single series arc that occurs in A. mulliplicatum). Re-examination of some of the specimens from New South Wales and south-western Australia assigned to A. opacum by Kott (1963) has shown them to belong to the present species. Laryae of the south-western Australian specimen are characteristic of A . multiplicatum (see Kott 1963, p.110, Fig, 22). The ranges of A. multiplicatum and A. opxcum overlap on the eastern and westem coast, but the former is not recorded from southerm Australia, and the latter species does not extend into the tropics (sce A. opacum, below).
Kott (1963) wrongly assigned colonies of the present species and others (viz, A. gastrolineasum, A. multilineatum and A. robustum n.sp.) to the S. African A. flavolineatum.

Aplidium opacum Kott, 1963
(Fig, 91. Plate 15a-c)
Aplidum opectum Kort 1963, p. 108 (part, holotypc AM U3929).
Aplidum policfferumi: Kott, 1963, p.106; 1972a, p.13; 1976. p. 62.

Aplidium follorum Kott, 1275, p.5.

Distribution

New Records: Western Australia (Rockingham, QM GH5461). South Australia (Great Australian Bight, SAM E2591; Port Bonython, QM GH4234-6, Perforated 1., QM GH4194; Spencer Gulf, QM GH5440-1: Yorke Peminsula, SAM E2540 E2571 E2587; St. Vincent Gulf, SAM E2484 E2586 E2594), Tasmania (SE Fluted Cape, SAM E2589). New South Wales (Port Hacking, QM GH31).
Preyiously Recorded; South Austaalia (Great Australian Bight - Kolt 1975; St. Vincent Gulf - Koll

1972a). Victoria (Balnarring Beach - AM U3929 holotype Kolt 1963; Westernport - Kotl 1976).

DESCRIPTION

External Appearance: Colonies are large and fleshy sometimes almost spherical or flattened upright masses to 8 em high and 6 cm diameter. More often they are flat-topped, extensive cushions often with the surface partly divided. Crowded zooids are perpendicular to the surface, but posteriorly criss-cross one another in the test.

In preservative the test is soft, but firm, gelatinous and translucent white with minute opaque cells, possibly blood corpuscles, in a soft layer of test that sheaths each zooid. Thesc opaque cells are especially crowded around each branchial aperture.
In photographs of well-developed living colonies zooids are seen to he in crowded, hranching double rows, with large branching primary cloacal canals scparating areas packed with zooids and secondary eloacal canals, Large, sessile common eloacal apertures are seattered over the surface at the junction of the primary canals. Zooids are cream (QM GH5441) or pink (QM GH5440).

One colony (QM GH4194) is described as an 'orange morph': and one is bright yellow (SAM E2586). At least 2 colour variants oecur, both translucent, one pink or orange and one yellow or yellowish cream.

Internal Structure: Zooids are relatively long and robust. The thorax and abdomen even when contracted are together up to 5 mm long and the posterior abdomen is from twice to many times that length. About 15 strong longitudinal muscle bands extend from the thorax to the posterior cnd of the abxiomen. The branchial siphon is short, often with well-developed bifid lobes. The atrial aperture, beside the third row of stigmata, has a neshy muscular atrial lip, usually deeply divided into 3 equal, pointed lobes, from the upper border of the opening. Muscles are along the centre of each lobe, and when these are contracted the lobes are frilled and crinkled along the edges. The atrial lip is often (but not always) large and conspicuous.

Stigmata are in 12 rows with up to 12 in each row. The stomach is of moderate length with 20 narrow, sometimes interrupted folds. The thick duodenum, mid-intestine and oval posterior

FIG. 91. Aplidium opacum - a, rooid, showing anterior part of posterior abdomen and embryos being incubated (QM GH5441); b, larva (QM GH4234). Scales: a, 0.5mm; b, 0.1 ma.
stomach are characteristic of the genus, and there are 2 pronounced rectal caeca. Gonads are in the posterior part, or the whole of the narrow postenor abdomen, with the small ovary anterior to the long double series of male follicles.

One to 3 embryos are incubated in the top of the abdomen and in the atrial cavity, but only one at a time develops to a tailed larva. They are present in specimens from South Australia collected in February (QM GH5441 GH4234 SAM E2586), April (QM GH4236 GH4194), May (QM GH14235) and November (SAM E2571). Larvae bave a trunk about 0.7 mm long and a sturdy tail reaching to the anterior end of the trunk. Ectodermal yesicles (about 35) are crowded in an are along each side of the adhesive organs. These vesicles are not in a single series, and clumps of them branch off a single stem from the larval ectoderm. Narrow, pointed, median ampullae alternate with the adhesive organs.

Remarks

Both the zooids and the large gelatinous colonies, with randomly scattered, sessile common cloacal apertures, and crowded branching systems of zooids in the present species are similar to Aplidium multiplicatum. These species also have in common the cloudy opaque cells in a sheath of soft test around each zooid, and about 20 stomach folds. The zooids of A. opacum are larger than those of A. multiplicatum however, and although they have the white opaque cells in a sheath around the zooids, they do not form as wide a band around the branchial aperture as in A. multiplicatum. The branchial sac of the present species is relatively narrower than that of A. multiplicatum, which has up to 20 stigmata per row but fewer than 12 rows. Larvae differ from those of A. multriplicatum, having long medjan ampullae and clumps of lateral vesicles in lateral bands (rather than a single arc of vesicles on each side).
Kott (1963) assigned several colonies to this species which have subsequently been found not conspecific with the holotype. A colony from Balnarring Beach (AM Y1401) made up of several lobes joined to a common base is probably a specimen of A. inflorescens (sce aboye). The Dolonies from western Australia and Port Jackson (AM Y1423 Y1439) are specimens of A. multiplicatum as is the larya figured by Kott (1963. Fig. 22). Colonies from Tasmania with zooids in which the atrial aperture is separate from the atrial lip are also erroneously assigned to this species and appear to be colonies of a Polyclinum sp.

Kout (1963) assigned specimens of the present species from Cockburn Sound to Aplidium pliciferum (Redikorzev, 1927). The latter species, known from coastal waters of Japan, including the Inland Sea (Tokioka 1953), has large colonies with branching double row cloacal systems as in the present species, and zooids and larvae which also appear to be similar to the Austratian species. Only the stomachs are different, having from 25 to 32 fine pleats in the Japanese species, while the Australian one has 20 to 24 . Thus the number of stomach folds appears to be the principal character separating these species, which are indigenous to temperate Australian and Japanese waters respectively. Despite their resemblance to one another, they apparently have different geographic ranges, and are separated from one another by the tropics.

Aplidium foliorum Kott, 1975 was thought to be distinguished by its large tripartite atrial lip. An identical lip now is known to be characteristic of the present species, although its length varies to some extent according to the position of the zooids relative to the cloacal apertures and according to their state of contraction. Aplidium macrolobatum has similar large lobes around the apertures, but it has sand embedded in the test, and only 5 stomach folds.

Aplidium ornatum nsp.

(Fig. 92)
? Aplidium multiplicatum: Kott, 1963, p. 103 (part,
spocimens from Currambin).

Distribution

TYPE LOCALTY: Queensland (Wistari Reef, NW corner, low tide under rubble near reef edge, coll. P. Kott 3.11.86 holotype QM GH5157).

Further Record: ? Queensland (Currumbin - AM Y3994 Kot 1963).

DESCRIPTION

External Appearance: The colony is small (5 mm high), mushroom-shaped, with a flat top about 1 cm in diameter. The diameter reduces toward the base. Sand is present around the outside of the colony but is absent from the upper surface and internally. Zooids are arranged in circular to elongate systems opening on the upper surface. The 3 or 4 common cloacal apertures are large and protruding, sometimes in the centre of a circle of zooids, but sometimes at one end of a
double row of zooids. In life the zooids are 'ruby' and the test "isabella' coloured (Ridgeway 1886).

Internal Structure: The zooids are vertical, with the long posterior abdomina extending into the base of the colony. Thorax and abdomen are together about 3 mm long. The atrial tongue from the upper rim of the opening is undivided or divided into 3 pointed lobes, There are 12 tows of stigmata, and the maximum number per row is about 10 , although the holotype is contracted and the exact number difficult to determine. The stomach wall is folded longitudinally into 25 folds.

Two large embryos are in the atrial cavity of the holotype, The larval trunk is 0.66 mm long. In each interspace between the middle and the dorsal and ventral adhesive organs respectively, is a median ampulla with a bi-lobed lateral ampulla
on each side. Dorsal and ventral clusters of numerous epidermal vesicles extend posteriorly from the anterior end of the larval trunk. The tail is telatively short, extending about two-thirds of the way around the trunk.

REMARXS

The distinctive characters of this species are its relatively narrow thorax, numerous stomach folds, and larvae with epidermal ampullae and numerous vesicles. Aplidium incubatum has a similar colony to the present specjes, but its circular systems are more regular and its laryae have median and lateral vesicles rather than the ampullae of the present species.

Aplidium multiplicatum, which it otherwise resembles in the colour of the zooids, and the bran-

FIG, 92. Aplidium ornatum n.sp. (holotype QM GH5157) - a, colony; b, thorax and abdomen; c, larval trunk. Scales; $\mathbf{a}, 5 \mathrm{~mm} ; \mathbf{b}, 0.5 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.
chial sac and stomach folds, is distinguished by having single arcs of epidermal vesicles in the larval trunk, sand absent from around the border of the colony, a softer test, opaque white pigment particles around the branchial apertures and long branching double-row systems. The specimen from Currumbin assigned to A. multiplicatum by Kott (1963) has sand around the base and sides of the colony, but not in the upper suface or embedded. The zooids are small, contracted, and appear to be arranged in circular systems. The atrial lip is from the upper rim of the aperture, and there are 18 stomach folds. Other details of their morphology are obscured.

Aplidium uteute has numerous stomach folds, but is distinguished by its smaller circular systems, completely naked colonies, more numerous stigmata per row but fewer rows, single arcs of larval epidermal vesicles, and, usually, the absence of red pigment from the thorax. Aplidium altarium (Sluiter, 1909) has numerous stomach folds and colonies of similar dimensions to the present one, but the 9 or 10 rows of stigmata have about 25 per row, the posterior abdomen is short with bunched male follicles, and unlike the present species, the colony is transparent.

Aplidium paralineatum n.sp.

(Fig. 93)

DISTRIBUTION

TYPE LOCALITY: Tasmania (45 nautical mls NNE of Sister I., $39^{\circ} 00^{\prime} \mathrm{S} 148^{\circ} 25^{\prime} \mathrm{E}, 92 \mathrm{~m}$, sand bottom, epibenthic sled, CSIRO Statn 22, coll. W. Zeidler 14.10.84, holotype SAM E10648).
Further records: None.

Description

External Appearance: The specimen is a long (3 cm), narrow cushion, broken at one end. It probably is a piece from a longer colony. A conical prominence about 1 cm high with a terminal common aperture is at the other end. Zooids are in parallel double rows, a row along each side of the long, straight cloacal canals that run the length of the colony, converging to the large, sessile cloacal aperture. Long ridges separate the double rows of zooids from one another. The test is relatively soft, although sand is embedded throughout. Along the under surface the test is produced into fine root-like processes, which, with their adherent sand, create a felt-like mass holding the colony in the sandy substrate. The colony appears to have been organised in a single

FIG. 93. Aplidium paralineatum n.Sp. (holotype SAM E10648) - a, colony; b, thorax and abdomen. Scales: a, $5 \mathrm{~mm} ; \mathrm{b}, 0.5 \mathrm{~mm}$.
cloacal system, although there may have been a second cloacal aperture at the mutilated end.

INTERNAL STRUCTURE: The zooids are robust, However, the thorax and abdomen together are only about 3 mm . The posterior abdomen is long and threadlike. The atrial tongue is relatively small, pointed, and produced from the anterior rim of the aperture. There are 15 rows of stigmata although these zooids are too contracted to determine the number in each row. The stomach is small with 5 deep folds in its wall A single series of testis follicles are in the posterior end of the long posterior abdomen.

REMARKS

The species is distinguished by its long double row systems and sessile colonjes. Similar long systems are in the stalked colonies of A. australiense which, however, has more numerous stomach folds than the present species.

Aplidium parastigmaticum n.sp.

(Fig. 94)

DIStribution

Typf: Loc:ality: Queensland (Heron I., iecf slope 10 m, coll. S. Cook 28.4.88, holotype QM GH5603).
Further Record: Qucensland (Heton I., QM GH5604)

DESCRIPTION

ExTERNAL APPEARANCE: The colonjes are sessile spheres about 3 cm in diameter. The test is firm and translucent, with some sand on the ridges between the systems. Living zooids are vermilion with buff coloured branchial apertures. In preservative both zooids and test are pinkish.

Zooids are arranged in circular to star-shaped systems, about 7 mm in diameter. The cloacal cavity is large, with some peripheral extensions to reach the zooids in the outer periphery of each of the systems. The test is soft, and the zooids all lie parallel to one another. Sand is embedded in the basal test, but not elsewhere.

InTERNAL Structure: Zooids are large and robust, about 7 mm in overall length even when contracted. In the contracted zooid the posterior abdomen is about hall and the thorax is slightly more than one quarter of the total zooid length.

FIG. 94. Aplidium parastigmaticum n.sp. (bolotype QM GH5603) - a, colony; b, zooid: c, portion of branchial sac showing muscle fibres in primary transverse and parastigmalic vessels. Scales: a, icm; b. $1 \mathrm{~mm} ; c, 0.5 \mathrm{~mm}$.

The longitudinal muscles tend to form a band in the dorsal half of each side of the thorax, and then continue in a wide band along the ventral part of the abdomen and posterior abdomen. Their contraction causes the thorax to curve around the shortened dorsum. Strong transverse muscle fibres are in the primary transverse and parastig-
matic branchial vessels. They separate into short terminal branehes on each side of the endostyle. The branchial aperture is 6-lobed, and the atrial aperture has a fleshy lip from the upper border of the opening. The tip of the atrial tongue is either undivided, or divided into 2 or 3 lobes. The forward pointing atrial aperture opens from a pouch

FIG. 95. Apliditm panum - a, colony (AM Y1425); b, thorax and abdomen (AM Y1425); c, mature larva (AM Y1418); d, immature larva (AM Y1418). Scales: a, $5 \mathrm{~mm} ; \mathrm{h}, 0.5 \mathrm{~mm} ; \mathbf{c}, \mathbf{d}, 0.2 \mathrm{~mm}$.
in the atrial cavity, which does not contract with the contraction of the dorsal part of the zooid. The stigmata are in 18 rows, with about 12 per row. Each row is crossed by a conspicuous parastigmatic vessel. A dorsal languet is on each parastigmatic, as well as on each primary transverse vessel.
The stomach at mid-abdominal level, has 5 distinct longitudinal folds. The male follicles are in two longitudinal series.

Remarks

The red zooids in the translucent test resemble A. uteute which, however, has close circular systcms (rather than the star-shaped ones of the present species) and more numerous stomach folds. The parastigmatic vessels, the atrial lip from the upper border of the opening, the pouch that forms beneath the atrial aperture when the zooid is contracted. The large stomach with 5 folds, and the parastigmatic vessels all occur in the temperate Aplidium amorphatum which is distinguished by its 8 branchial lobcs, distinct circular systems, and poorly developed gastric folds. Aplidium protectans, which extends further north than A. amorphatum but has the same large zooid and atrial and branchial apertures, has distinct circular systems opening to depressions in the surfaec, and lacks parastigmatic vessels.
Some features of the present colony, such as thc stellate systems, and surface sand between them, are reminiscent of A. clivosum. However, the atrial lip is separate from the aperture in A. clivosum, the zooids are larger than those of the present species and therc are no parastigmatic vessels. It appears, therefore, that the colony is a member of a formerly undescribed species.

Aplidium parvum Kott, 1963
(Fig. 95)
Aplidium parvum Kott, 1963, p. 112.

DISTRIBUTION

New Records: None.
Previously Recorded: Western Australia (Albany - AM Y1425 Kott 1963). Victoria (San Remo - AM Y1418 Kott 1963).

DESCRIPTION

External Appearance: Colonies are small spherical transparent heads on short stalks to 1 cm high overall. The zooids are arranged in longitudinal rows, converging to a common cloaca on the top of the head.

Internal Structure: Zooids are small, the length overall extending to about 6 mm . The posterior abdomen is up to twice the length of the remainder of the zooid. The short branchial siphon has 6 lobes around the aperture. The atrial aperture has a short, undivided lip from the anterior rim of the opening. Stigmata are in 12 rows of about 8. The short stomach has 18 , mostly parallel, folds. The oesophagus has a pronounced prestomach enlargement at its distal end. Three embryos are incubated in a brood pouch that projects from the thorax in the syntypes (AM Y1418) collected in October.
The larval trunk is 0.8 mm long. Anteriorly, single median ampullae are in the interspaces alternating with the adhesive organs. These median ampullae have columnar cells on them, and when well developed they become flat-ended rather than conical, the stalks of the adhesive organs become shallower and saucer-shaped, with long, slender stalks.

REMARKS

The small colonies, zooids and larvac are all distinctivc. Although the systems resemble those of A. altarium, A. geminatmn, A. inflorescens and A. brevilarvacium, the colonies are smaller, and stomach folds and stigmata are fewer. Like the present specics the larva of A. inflorescens lacks epidermal vesicles. However, its trunk is about twice the length of that of the present species, and is further distinguished by the presence of lateral as well as median ampullae. Aplidium geminatun, Aplidium altorium and Aplidium brevilarvacium have different larval epidermal vesicles from the present species, and larger larval trunks (about 1 mm long). Further, Aplidium altarium has appreciably more stigmata per row than the present species, A. brevilarvacium has fower stomach folds (10), and in A. geminatm" the stomach folds are more numcrous.

Aplidium petrosum n.sp.
(Fig. 96. Plate 15d-f)

Distribution

Type Locality: South Australia (Cape Jaffa, Margaret Brock Lighthousc, coll. AIMS Bioactivity Group 18.2.89, holotype QM GH5454).

Further Records: South Australia (The Gap, QM GH4165-6; Hopkins 1., QM GH4190).

DESCRIPTION

External Appearance: Colonies are rigid, sandy, flat lamellae, about 1 cm thick, which di-
vide and curve to form a large 3 -dimensional maze. Zooids open on both sides of the lamellae. They are arranged along each side of cloacal canals that surround circular to elongate zooidfree areas. Common cloacal apertures are at the junctions of the cloacal canals. The test is slightly depressed over the cloacal canals in the preserved specimens. Sand is densely packed in the test and obscures the systems. Zooids, lying parallel to one another, are tightly enclosed in the test.
Internal Structure: Zooids are small and slender, the thorax and abdomen together being about 2 mm long. The branchial siphon is short and the aperture small with 6 short, rounded lobes. The small atrial lip is pointed or bipartite and projects from the anterior rim of the opening.

Stigmata are in 9 rows with only 6 per row, in the narrow thorax. The stomach is long and narrow with 5 longitudinal folds. The posterior abdomen is about twice the length of the rest of the zooid, with male follicles in double rows; or when the zooid is contracted, drawn up into a bunch behind the gut loop.
Three embryos are being incubated in the atrial cavity of specimens collected in April (QM GH4165). The larval trunk is about 0.8 mm long. Single large, conical, median ampullae altemate with the adhesive organs; which have slender stalks that expand into a cone at the base. A wide band of epidermal vesicles is along each side of the median line around the anterior half of the trunk.

FIG. 96. Aplidium petrosum n.sp. - a, part of colony (QM GH5454); b, thorax and abdomen (QM GH5454); c, larval trunk (QM GH4166). Scales: a, $1 \mathrm{~cm} ; \mathbf{b}, 0.5 \mathrm{~mm} ; \mathbf{c}, 0.1 \mathrm{~mm}$.

REMARKS

Colonies forming stiff sandy lamellae arc known also for A. solidum from the eastern and north-western coasts. They also have similar zooids, arranged in similar systems. The present species is distinguished by its more branched colony (A. solidum having upright lamellae rather than a 3-dimensional maze); and by the larvae which are larger than those of A. solidum (0.5 to 0.6 mm long trunk) and have median ampullae (not present in A. solidum).
Aplidum ritteri have similar zooids with the atrial lip from the upper rim of the opening, but also have smaller larvae than those of the present species and long straight cloacal canals.

Aplidium protectans (Herdman, 1899)
(Fig. 97. Plate 16a,b)
Amaroucum protectans Herdman, 1899, p. 73.
Aplidium protectans: Kott, 1963, p. 102.
Aplidium longithorax Monniot, 1987, p. 525.

Distribution

New Records: Quecnsland (Capricorn Group, QM GH5562 GH5574; central Great Barrier Reef, QM GH5362 GH5378; Lizard I., QM GH332 GH5553 GH5611-2; far nothern Great Barrier Reef, QM GH5336).
Previously Recorded: New South Wales (Montague South - Kott 1963; Port Jackson - Herdman 1899). New Calcdonia (Monniot 1987).

The species is recorded from 0 to 100 m depth.

Description

External Appearance: Colonies are firm, gelatinous naked domes, spheres or cushions 2.5 cm to 6 cm in maximum dimension. The test is translucent both living and in preservative, and the zooids are pink, yellowish or orange. Circular systems, each of from 10 to 16 zooids are evenly distributed around the outer surface of the colony, and are slightly depressed into the surface in preserved colonies. The common cloacal apertures are in the central of each system. Systems are well spaced and never crowded. They appcar as regular daisy-like patterns over the surface of the colony.
Internal Structure: Zooids are large and robust, the thorax and abdomen even in contracted specimens together being more than 4 mm long, and the posterior abdomen about the samc length. The branchial siphon has 8 rounded lobes, the atrial siphon is produced out toward the central common cloacal aperture and an undivided,
fleshy atrial lip arises from just above the sphincter muscle in the rim of the opening. In some zooids the atrial lip appears to be part of the rim of the siphon, but in others the atrial siphon is close to, but separate from its lip. The blunt tip of the atrial lip is divided into 3 to 6 characteristically regular, short, finger-like rounded lobes. The body wall is muscular with about 20 longitudinal bands on each side of the thorax, extending along the length of the zooid in a wide lateral band on each side. Stigmata are in 18 to 24 rows with about 20 per row. The oesophagus is relatively long, opening into a long barrel-shaped stomach with 5 shallow folds about one third of the way down the abdomen. When contracted the stomach wall tends to be drawn into horizontal folds. There is a short thick duodenum, but the remainder of the post-pyloric part of the descending limb of the gut loop is long, curving around in a corkscrew spiral, which may be a homologue of the posterior stomach, although it is longer than usual. A narrow, short section of mid-intestine intervenes between this thick distal end of the descending limb and the rectum. The rectal caeca are not well developed.

Two or 3 large eggs are present just behind the gut loop, separated from the pear-shaped male follicles which are in one or 2 longitudinal series in the remainder of the posterior abdomen or, if the longitudinal body muscles are sufficiently contracted, bunched. Up to 3 embryos, brown in preservative, are lined up in the posterior part of the atrial cavity of specimens collected in August (QM GH5362) and tailed larvae are present in colonics from Lizard 1. collected in June (QM GH5553). The larval trunk is $0.8-0.9 \mathrm{~mm}$ long. It has single median ampullae between and dorsal and ventral to the adhesivc organs, and 4 clusters of epidermal vesicles, one on each side of the dorsal and ventral mid-lines behind the adhesive organs.

Remarks

The large zooids in conspicuous circular systems, larvae with median ampullae and ventral and dorsal clusters of vesicles, and fleshy colonies arc characteristic. Kott (1963) also noted the tendency for the stomach to collapse in horizontal folds in contracted zooids from a specimen from NSW waters - which was found on a crab.

Polycitor giganterm (also found on crabs) has similar large, firm, gelatinous colonics which may be a convenient consistency for the crab to hold in place and trim to an appropriate rcgular size and shape.

Colonies and zooids resemble Aplidium amorphatum in having 8 rather than 6 branchial lobes. The present species has firmer colonies a longer thorax and abdomen, and it lacks parastigmatic vessels. Larvae, although smaller, have median ampullae and dorsal and ventral vesicles like A. lunacratum.

Aplidum indicum (Renganathan and Monniot, 1984) from India has a similar fleshy colony to the present species and equally shallow stomach folds. Howe ver, the small, extended zooids of the Indian species were not seen to be arranged in circular systems, and have fewer rows of fewer stigmata than the present species.

FIG. 97. Aplidium protectuns - a, small colony (QM GH5329); b, thorax, abdomen and anterior part of posterior abdomen showing digitiform tip of atrial lip and large stomach (QM GH5553); c, branchial aperture from above

Aplidium ritteri (Sluiter, 1895)

(Fig. 98)
Amaroucium ritteri Sluiter, 1895, p. 10.
Aplidium lobatum: Tokioka, 1967, p.22. ? Nishikawa, 1984a, p.110. Monniot, 1987, p.525. Monniot and Monniot, 1987, p. 73.

DISTRIBUTION

New Records: Queensland (Capricorn Group, QM GH5649 GH5660 GH5685 GH5704 GH5779-81).
Previously Recorded: Queensland (Torres Strait Sluiter 1895). Western Pacific (Palau Is, New Caledonia - Tokioka, 1967, Monniot, 1987; Truk, Ponape - Nishikawa 1984a). French Polynesia - Monniot and Monniot 1987).

The species is a tropical one.

DESCRIPTION

EXternal Appearance: The colonies are investing sheets or lumpy and massive with a relatively even surface and sand embedded throughout. The ridges that separate the long double rows of zooids are relatively inconspicuous, and the zooid openings along each side of the cloacal canals between these long ridges often are obscured by the embedded sand. Common cloacal apertures are at the junctions of 2 or more canals. Living colonies, are described as 'sandy with pink', and 'solid, sandy'.

Internal Structure: Relaxed zooids are about 3 mm long. The thorax is about half the total length and the abdomen and posterior abdomen each half of the remainder. The 6 branchial lobes are well-formed and triangular. The atrial aperture is small and rounded with a short, pointed atrial lip from the anterior rim of the opening. A conspicuous bulging sphincter is behind the branchial lobes. The body muscles are strong and the short posterior abdomen is often drawn up into a short clump behind the abdomen.

Stigmata are in 11 or 12 rows of up to 8 in the narrow pharynx. The most ventral and dorsal in each row are short. The oesophagus is moderately long, and the stomach is divided into 5 by the deep folds in its wall. There is a long, narrow duodenum, narrow proximal part of the mid-intestine and an oval posterior stomach in the end of the descending limb of the gut loop.

The posterior end of the posterior abdomen is curiously flattened and straight edged. Up to 8 male follicles alternate with one another, or they are in a single series in the relaxed posterior abdomen; when the zooid is contracted they are bunched together. Male and female gonads are
not present together in the one zooid. Embryos are incubated in the atrial cavity of specimens collected in November (QM GH5649) the tailed larva is small, the trunk 0.47 to 0.57 mm long, with the tail wound three-quarters of the way around it. The adhesive organs are relatively deep

FIG. 98. Aplidium ritteri - a, zooid (QM GH5779); b, larva (QM GH5649). Scales: a, $0.5 \mathrm{~mm} ; \mathbf{b}, 0.1 \mathrm{~mm}$.
axial cones in epidermal cups. The base of their stalks expand into wide cones. Short median ampullae alternate with them. The anterior end of the larval trunk is obscured by a long, wide lateral arcs of epidermal vesicles.

Remarks

The specimens described above have all the characters of the type from Torres Strait, with the atrial lip from the upper rim of the opening, about 12 to 14 rows of 6 or 7 stigmata, 5 stomach folds, and furrows and ridges on the upper surface of the colony. The species has much in common with the Red Sea Aplidium lobatum Savigny, 1816 with which it often has been confused. The principal differences between these species are the larger branchial sac of A. lobatum, with up to 12 stigmata per row, and the division of the upper surface of the colony into more or less regular flat-topped, oval cushions, separated from one another by narrow furrows (see Michaelsen 1920). Aplidium macrolobatum n.sp. has a longer atrial lip, more stigmata per row, and median vesicles in the larva as well as lateral ones.
In Australian waters the temperate and eastcoast species Aplidium solidum has much in common with the present one, having sandy colonies, the atrial lip from the upper rim of the aperture, 12 rows of up to 7 stigmata, 5 stomach folds and bunched male follicles in a short posterior abdomen with a flattened straight-edged tip. A. ritteri has straight rows of zooids in contrast with the curved ones surrounding circular zooid-free elevation of the test in A. solidum. Although this appears to be a minor difference, the larvae constitute more compelling evidence that the species are separate - the larvae of A. solidum lack median ampullae but their trunk length (0.4 to 0.5 mm) overlaps the range in the present species.

Aplidium caelestis has similar sandy colonies, but more distinct long, double-row systems and zooids with the atrial tongue separate from the aperture.

Aplidium robustum n.sp. (Fig. 99. Platc 16c)

Aplidium flavolineatum: Kott, 1975, p.5.

Distribution

Type Locality: Western Australia (King George Sound, Albany, small breaking reef, south of Mt Martin, $35^{\circ} 0.8^{\prime} \mathrm{S} 117^{\circ} 57.0^{\circ} \mathrm{E}, 2.0 \mathrm{~m}$, in small crevices in flat base rock, coll. AIMS Bioactivity Group 27.3.89, holotype QM GH5467; paratype QM GH5506).

Further Records: South Australia (Great Australian Bight - SAM E2595 Kott 1975). Tasmania (Dunnalley, TM D1866).

DESCRIPTION

External Appearance: Colonies are sessile, spherical or conical to 8 cm high and 6 cm in greatest (basal) diameter. The test is soft and gelatinous, but turgid and opaque, cloudy beige in preservative. In life the colony is pink around the common cloacal apertures and white over the zooids. Zooids arc in circular, oval or elongate systems around and converging to the common cloacal apertures, which are numerous, 1arge, sessile, and scattered randomly over the surface. They are said to 'turn to slits' when the colony is touched. Sand is present on the basal surface of the South Australian specimen, which is smaller than the others.
The zooids are perpendicular to the surface but posteriorly criss-cross one another in the centre of the colony. A sheath of soft test containing opaque white corpuscles clings to the zooids.
Internal Structure: Zooids are robust, the contracted thorax and abdomen together being about 3 mm and about equal in length. When relaxed the thorax probably is longer than the abdomen. About 15 longitudinal muscles are on the thorax and extend the length of the zooid. The 6 branchial lobes are small and round. The atrial lip from the upper rim of the aperture has a fleshy lip divided into 2 or 3 pointed lobes, or undivided with or without smaller lobes on each side. Stigmata are in 14 to 16 rows of up to 12 . The oesophagus is moderately long, and the relatively small stomach, in the middlc third of the abdomen, has 20 longitudinal, parallel folds in its wall. The duodenum, mid-intestine and posterior stomach are in the posterior third of the descending limb of the gut loop. There are rectal caeca at the proximal end of the rectum.
Up to 3 embryos are in the atrial cavity of the type material, of which one may be a well-developed tailed larva. The larval trunk is long (1 mm), and almost cigar-shaped. The tail reaches to its anterior end. A lateral ampulla is on each side of the conical or cylindrical median ampullae that is in each interspace between the adhesive organs. The median ampulla between the middle and ventral adhesive organs is divided into 2 . A cluster of epidermal vesicles is along each side of the mid-dorsal and mid-ventral lines, but not around the anterior end of the trunk.
Up to 6 embryos arc lined up in the atrial cavity of the South Australian specimen. The tailed lar-
vae are smaller (trunk 0.8 mm long) and the lower median ampulla is not subdivided but otherwise they are similar to the larvae of the type specimens.

REMARKS

The species resembles A. opacum in having a sheath of soft test containing opaque white corpuscles clinging to the zooids, large fleshy colonies, and the same number of stomach folds.

FIG. 99. Aplidium robustum n.sp. (holotype QM GH5467) - a, thorax and abdomen; b, larva. Scales: a, $0.5 \mathrm{~mm} ; \mathrm{b}, 0.2 \mathrm{~mm}$.

However zooids of the present species are more robust than those of A. opacum, with more rows of stigmata. They also have a larger larva with lateral ampullae and fewer vesicles than A. opacum.
The present species has larger opaque white cells around the zooids and firmer test than A. multiplicatum, and it lacks the characteristic single arc of lateral vesicles in the larval trunk.

In the distribution of epidermal vesicles this species resembles A. ornatuin from tropical waters, although the latter species is smaller than the present one and is a different shapc.
The smaller colony (A. flavolineatum: Kott, 1975) from South Australian waters with a layer of sand on its under surface and smaller larvae than the type may be found not to belong to the present species. However, at this stage it is possible that its differences represent no more than intraspecific variation. It was assigned to A. flavolineatum by Kott (1975) on the basis of its large number of stomach folds. However, the South African species has more numerous larval lateral ampullae and a brood pouch.

Aplidium gastrolineatum has many characters in common with the present species, but its common cloacal apertures are protuberant rather than sessile, and its larvae are different.

Aplidium rosarium n.sp.

(Fig.100)

DISTRIBUTION

Type Locality: Queensland (Heron I., Blue Pools, rubble fauna, low tide, coll. P. Kott 8.8 .82 , holotype QM GH 5224).
Further Records: None.

DESCRIPTION

EXTERNAL APPEARANCE: The firm, gelatinous colony is wedge-shaped, with a little sand embedded basally. When living the holotype was rosepurple, but in preservative it is white and cloudy, with beige-pink zooids. Zooids are along each side of long canals converging to the cloacal apertures.
Internalstructure: The zooids are robust, with up to 4 embryos crowded in the atrial cavity. The longitudinal thoracic muscles are strong and the thorax and abdomen of contracted zooids are together only 2 mm . The 6 branchial lobes are triangular and conspicuous. The atrial lip is fleshy and arises from the upper rim of the aperture. It has a central band of longitudinal muscles that
extend into the tip, which is pointed or divided into 3 small terminal lobes.
The stigmata are in 12 rows of about 12 per row. The short stomach wall has 20 folds. The posterior abdomen is about twice the length of the rest of the zooid.

Larvae are of moderate size, the trunk being 0.6 mm long. with 2 rows of stigmata in the larval pharynx. A single arc of about 20 vesieles is along cach side of the median line around the anterior

FIG. 100: Aplidium rosarium n.sp. (holotype QM GH5224) - a, 200id; b, larva. Scales: a, 0.5 mm ; b, 0.1 mm .
end of the trunk. In immature larvae, a few median vesicles branch off the tip of the median ampulla which is in each interspace between the adhesive organs. The ampullae subsequently disappear and the stalk of each median vesicle appears to be independent, and attached directly to the larval ectoderm.

REMARRS

Aplidium ornatum has a similar gelatinnus colony, but its branchial sac is narrower and its large larvae have posterior vesicles and median and lateral ampulae, and lack the anterior are of lateral vesieles that is present in A. rosarium. The larvac resemble those of A. filiforme, but colonies differ, and the zonids have more rows of stigmata.

The present species has some affinitics with A. altarium but its larvae are smaller, the pharynx narrower and more muscular, and the stomach smaller with fewer folds. Aplidium uteute has circular systems, a brood pouch and more numerous stomach Lolds distinguishing it from the present speejes. Some aspects of the larvae suggest a relationship with A. incubalum, however the larval trunk of the latter species is larger, has more median vesieles and, the zooids have more stigmata and stomach folds, and are arranged in circular systems. Thus, despite the fact that only the holotype is available, the species is readily distinguished from other known species.

Aplidium rubricollum Kott, 1963
(Fig. 101. Plate 16d)
Aplidium rubricollum Kont, 1963, p. 103 (part, not specimens from Western Ausiralia AM Y $1403<$? A. solidumi; 1972a, p. 15: 1972b, p. 176.

Distribution

New Recorbs: South Australia (Avoid Bay, QM GH4191; Port Noarlunga, QM G9304).
Previously Recorded: South Australia (Reevesby 1 . - AM Y1417 holotype Kott 1963; Upper St. Vincent Gulf - SAM E2579 Kott 1972a; Pearson I. - Kott 1972b). Balnarring Bcach - AM Y1415 Kott 1963).

Description

External Appearance: The colonics range from small cushions investing weed or rubble to regular oval cushions to 5 cm in maxımum extent but never more than 1cm thick. Sand is embedded in the internal test, hecoming sparse in the upper laycr around the thoraces. Sometimes it is completely absent from the upper surface of the colony, but in other colonies only the test above the
systems, including the protruding common cloacal apertures, is naked. Zooids are crowded along cach side of relatively short canals that converge to the protruding cloacal apertures which arc scattered over the surface, about 5 mm apart. Red pigment cells are said to have been present in the surface layer of test in the living and freshly prescrved specimens, and the colourless zooids are conspicuous, interrupting these. In the long-
preserved specimens a brownish deposit in the surface test may be the remains of these red cells.
Internal Appearance: Zooids are small, with 10 fine longitudinal muscles. The atrial lip has an undivided tip which becomes bidentate through the contraction of a median band of muscles. The lip arises from the body wall close to, but separate from the opening, which is on a short protruding siphon, of fen flattencd antero-posteri-

FIG. 101: Aplidium rubricollum - a, surface of colony showing 2 systems (QM GH4191); h. zooid (holotype AM Y1417); c, larva (holotype AM Y'1417). Scales: $\mathbf{a}, 2 \mathrm{~mm} ; \mathbf{b}, 0.5 \mathrm{~mm} ; \mathbf{c}, 0.2 \mathrm{~mm}$.
orly. Stignata are in 11 or 12 rows of up to 14. The stomach is short with 5 deep folds.

One specimen collected in February (QM G9304) and the holotype collected in December contain single, large embryos in the atrial cavity. The larval trunk is $0,7 \mathrm{~mm}$ long. It has median and lateral ampullae, but no epidermal vesicles.

REMARKS

The systems and the colonies resemble those of A. clivosum except that the canals converging to the cloacal apertures are not so numerous, the zooids and systems are smaller, and the larver lack the vesicles that obscure the anterior end of the trunk in A. chivosum. The zooids are small and, like those of A. clivosum, have the atrial aperture separate from the opening, but the present species has telatively shorter and wider thoraces with up to 12 rows of 14 stigmata while A. clivasum has up to 18 rows of about 12 stigmata. Colonies assigned to Aplidium caelestis (see above) often superficially resemble those of the present species. However, A. caelestis has a narrower thorax with fewer stigmata per row, the systems have Jonger double rows of zooids and the Jarvae contain epidermal vesicles.

Aplidium solidum (Herdman, I899)
(Fig. 102)
Psounmopitdium solidum Herdman. 1899, p.85. Psammaplidium lobatum: Herdman, 1899, p.85
Psammaplidium fragile Herdman, 1899, p. 86
Psammaplidium incrustans Herdman, 1899, p. 87.
Aplidium solldum Millar: 1963, p. 1.
Aplidium arhoratum Kott, 1963, p. 96.
Syrolcum investum Kott, 1963, p. 90.
Aplidium lobalum; Kott, 1976, p.61.
? Aplidium rubricollum Kott, 1963, p. 103 (part, specimen from Rounest I. AM Y1403).
Not Amaroucium solidne Ritter and Forsyth, 1917. p.486; Van Name, 1945, p.49. The species name is a secondary homonym and accordingly a nom nov. is required for this species.

Distribution

New Records: Western Australia (Dampier Archipelago, QM GH5411). New South Wales (Jervis Bay, QM GH5778; Batemans Bay, AM Y2278; Bass Point, QM GH5620; Arrawarra, QM GH5777). Queensland (Point Lookout, QM GH5782).
Previously Recorded: New South Wales (Botany Bay - AM U3941 Herdman 1899; Millar 1963). Queensland (Bargara - holotype AM U3928. paratype QM G4937 S. investum Kout, 1963),

DESCRIPTION

External Appearance: The colonies form extensive rigid, sandy sheets, lobes and lamellae from about 3 mm to 2 cm thick. These branch and fuse with one another in a vertical plane. Along their upper border the lamellae terminate in rounded margins. The upright lobes and lamellae form when the sheet is folded, fuses back to back, and extends up in the vertical plane. Sand is embedded throughout,
Zooids appear to be fairly evenly placed and close to one another, along the sides of narrow, shallow canals. Circular or oval, raised zooid-free arcas sometimes are between (or surrounded by) the double rows of zooids. Common cloacal openings are scattered over the surface of the colony at the junction of the canals. The colour of the colonies is dominated by the sand, although the zooids are pinkish in preservative.

Internal Structure: The zooids are small, seldom more than 4 mm evenin relaxed condition. Thorax, abdomen and posterior abdomen are of about equal length. Fine longitudinal muscle bands extend the length of the zooid. A sphincter muscle is at the base of the 6 pointed branchial lobes. The small, circular atrial aperture has a small lip, undivided or divided into 2 or 3 pointed lobes, from the anterior rim of the opening.
Stigmata are in 9 to 12 rows of about 6 . The long, narrow stomach has 5 folds. The posterior stomach is large, oval, at the distal end of the descending limb of the gut loop. The posterior abdomen is relatively short, with a single series of up to 7 male follicles in a single longitudinal series or sometimes bunched up behind the anterior ovary. However, even when it is not contracted, the extremity of the posterior abdomen has a truncated flat appearance. A small ovary is often present anterior to the testis follicles.
Two to 5 embryos are crowded into the atrial cavity of specimens from Botany Bay from Jervis Bay in February (QM GH5778) and from South Australia in April (QM GH4165). Larvae are small, the trunk 0.4 to 0.5 mm long with the tail wound balf to three-quarters of the way around it. A mass of epidermal vesicles surround the 3 median adhesive organs and obscure the anterior end of the trunk, but there are no median ampullae. The base of stalks of the adhesive organs expand into a cone.

REMARKS

Like the present species, Aplidium acroporam n.sp. has small zooids with the atrial lip from the fim of the opening. However it has 8 stomach
folds (rather than 5), and circular systems with zooids surrounding the cloacal cavity (rather than along each side of narrow canals).
The specimen from Rottnest I. appears to have been wrongly assigned to A, rubricollum by Kott (1963). Both colony and zooids resemble those of
the present species except in the colour (pink with red zooids), which they have retained over a long time (40 years) in preservative. The colour of the living colony is not known. Although brown to orange living specimens of A. solidum are known the colour of the embedded sand dominates their

FIG, 102: Aplidium solidum - a, b, parts of colonies (QM G4937, AM U3941); c, surface of colony showing cloacal apertures at junction of the cloacal canals that surround the small zooid-free test areas (QM GH5782); d, e, zooids (QM GH5777 GH5782); f, larval trunk (QM G4937). Scales: a, b, 2em; c, 2mm; d, e, 0.5 mm ; f, 0.1 mm .

colour in preservative. Therefore, the specimen from Western Australia is unusual and despite similarities in its morphology il may not be conspecific with A. solidum.
The sandy investing colonies resemble some of Aplidium caelestis, although cloacal canals of the present species surround circular areas rather than the long ridges of A. caelestis, which also has colonies that are thicker and do not fold back to form upright lamellae as they do in the present species. Further A. caelestis, has zooids with longer branchial siphons, the atrial lip separate from the opening, and testis follicles in a double. series in a long (rather than short, truncated) posterior abdomen.
The species resembles Aplidium ritteri in its sand-filled colonies, small zooids with narrow thoraces, small atrial lip from the upper tim of the opening: and short, truncated and flattened tip of the posterior abdomen. The systems of A. ritteri are in long and relatively straight double nows, and the larvae have a trunk 0.5 to 0.6 mm long, with median ampullae as well as lateral vesicles. Aplidium petrosum from South Australian waters has similar systems as weil as similar zooids to the present species, but is distinguished by its more complex colonies and larger larvae with median ampullae.

> Aplidium tabascum n.sp.
> (Fig. 103. Plate 16e,f)

Distribution
 TypF Local.ry: Queensland (Heron L. reef, 15m, coll. N. Coleman 58.77.AMPI 207, holotypeQMGH5208; Heron I, reef, 9 m, coll. N. Coleman 16.7.73, AMPI 85, paratype QM G9726; coll. P. Fredrickson, paratype QM GH5542; Erskine 1. 5-10m, ooll. Roche (SL Y 12) 21.3.76, paratype QM G9727).
 Purther Records: Queensland (Capricorn Group, QM G9725 GH5513 GH5543; Swain Reefs, MV).

DESCRIPTION

External Abpearance: The colonies form large fleshy mats or shects to 7 cm or more in maximum dimension. The surface has a 'marbled' appearance owing to irregularly shaped zo-oid-free areas of test, between and around which are slightly depressed areas where a relatively thin layer of surface test covers the cloacal canals. Sparse but evenly distributed sand grains are in the zooid-free solid parts of the test and sand
grains are crowded into a line along the margins of these areas where zooids line the cloacal canals and the branchial apertures open to the exterior. Sand is also crowded around the margins and in the base of the colony, but is not present on the upper surface either over the common cloacal canals or the zooid-free areas they surround. Large common cloacal apertures are in the depressed areas over the common cloacal spaces and appear to be randomly distributed.
Sometimes the solid test areas are isolated from one another, forming islands surrounded by common cloacal cavities and zooids. In other specimens they are long and curved and meander through the colony between and around the cloacal spaces.
The colonies are a bright red-orange colour in life. Although a trace of the orange pigment at first persists in the preserved colony, subsequently they are white. In fresh material, the red pigment is in minute crowded spherical cells in the test and the zooids but these are not present in preserved specimens.
Internal Structure: Zooids are small and narrow, 2 or 3 mm long, although when contracted they are shorter with the posterior abdomen bunched and drawn up alongside the gut loop. The 6 branchial lobes around each branchial apcture have bands of muscles which sometimes are drawn in to subdivide the tip of each lobe. The atrial tip from the upper rim of the aperture is undivided or divided into 2 or 3 pointed lobes of varying size. Fine longitudinal muscle bands are on the thorax, and extend the length of the abdomen and posterior abdomen in a wide ventral band. The stigmata are in 15 rows with up to 8 per row. The stomach wall has 5 folds. The gut loop is relatively short. The posterior abdomen is clubshaped when the zooid is relaxed, with a long neck anteriorly and about 8 large male follicles in a single series in the expanded posterior part. When contracted, bowever, the testis follicles are bunched, and the posterior abdomen is drawn up alongside the gut loop. An ovary with 2 or 3 large oocytes is anterior to the testis follicles.
One or 2 embryos are in the atrial cavity of zooids collected in July and August (QM G9726 GH5208 GH5513) but note in March or December. The larval trunk is oval, about 0.6 to 0.8 mm long, with the tail wound the whole way around it. On each side of the modian line dorsal and ventral clusters of epidermal vesicles extend pos-

FIG. 103: Aplidium tabasccum n.sp. - a, surface of colony showing almosi continuous line of sand particles around each area of zooid-free test containing sparse embedded sand (QM GH5513); b, zooid (gut loop twisted to the lefl) (QM GH5208); c, sexually immature zooid (QM GH9725); d, thorax showing large bilobed atrial lip (QM GH5208); e, larva (QM GH5208), Scales; a, Iem; b-d, $0.5 \mathrm{~mm} ; \mathrm{e}, 0.2 \mathrm{~mm}$.
teriorly from opposite the base of the dorsal and ventral adhesive organs, respectively. These dorsal and ventral bands of vesicles are not continuous at the anterior end of the trunk. Neither vesicles nor ampullae are present in the median line between the adhesive organs. One larva found in the holotype had 5 adhesive organs instead of the usual 3 .

Remarks

The present species, based on a significant number of specimens, has a striking appearance with apparently stable characters showing little or no variability. It is distinguished by its double rows of zooids opening into depressions surrounding cushion-like elevations on its naked upper surface, the capacity to sort sand particles and arrange them around the margin of the zooidfree surface elevations, its red-orange colour, narrow thoraces, and the interruption of the band of lateral larval vesicles.
The same sort of cloacal systems, and the capacity to sort embedded sand particles and arrange them in the colony are properties of other Aplidium spp. (e.g. A. caelestis, A. lenticulum n.sp.). Aplidium lobatum Savigny, 1816 from Suez and A. cellis Monniot, 1987 from New Caledonia also have similar cloacal systems. Aplidium caelestis and A. lenticulum differ in having an atrial lip separate from the opening but the Aplidium cellis and A. lobatum have similar colonies, zooids and larvae to those of the present species, differing only in their embedded (and sometimes encrusting sand), smaller larval trunk (0.56 mm long), and colour (white rather than red). Despite the description of \boldsymbol{A}. cellis, the reported incrustation of sand on the upper surface (slightly less densely distributed over the cloacal canals) is not apparent in the published photograph (Monniot, 1987, Pl. 2B). Further, it is not clear whether the white colour recorded for the 2 New Caledonian specimens is their living colour, or their colour in prescrvative, or merely the colour of the sand encrusting them. Thus, in addition to the possibility that the New Caledonian species is a junior synonym of A. lobatum, A. tabascum could be as well.

Aplidium triggsense Kott, 1963
(Fig. 104)

Aplidium triggsensis Kott, 1963, p.104; 1976 (A. triggiensis) p. 61. Monniot, 1987, p.531.

DISTRIBUTION:

New Records: Western Australia (Cockburn Sound WAM 23.84). South Australia (Pearson I., SAM E2574). Queensland (Heron I., QM GH5305).
Previously Recorded: Western Australia (Triggs I. - AM U3923 holotype, Y1408 Kott 1963; Rottnest I. - AM Y1421 Y1428 Kott 1963; Nornalup - AM Y1405 Kott 1963). Victoria (Balnarring Beach - AM Y1427 Kott 1963; Westernport - Kott 1976). New Caledonia (Monniot 1987).

The Western Australian records are all from coastal habitats subjected to surf and turbulence, and the Westernport location is one where strong tidal currents prevail. A continuous temperate to tropical range is suggested by the record from Heron I.

Description

External Appearance: One colony from Heron I. (QM GH5305) is an upright lobe, but usually the colonies are firm, gelatinous, investing sheets 0.5 to 0.6 cm thick and 4 to 5 cm in maximum extent. Varying quantities of sand are present in the basal half of the test but not in the transparent upper half. This strengthens the colony. The margins are irregular and reduced in thickness. Root-like projections from the base of the colony extend into and around particles of the substrate helping to anchor the colonies, which are found in rigorous, turbulent habitats. Zooids are crowded, conferring a reddish-pink colour on the preserved colonies. The living colony from Heron I. is reported to have been orange buff, with translucent test.
Circular cloacal apertures are randomly distributed over the surface. It is probable that the zooids are in double-row systems but this could not be confirmed in these crowded colonies. The posterior parts of the zooids criss-cross one another in the basal half of the colony.

Internal Structure: Zooids are small, the contracted abdomen and thorax together being less than 3 mm , al though the thin posterior abdomen is up to twice that length. The branchial aperture is small, with a short siphon. The atrial aperture is a small, rounded, sessile opening with a small pointed or tridentate tongue from the upper border of the opening. The thorax has 12 wide longitudinal muscles and these extend the length of the abdomen. Stigmata are in 8 to 10 rows of up to 15 . The stomach is short with 15 longitudinal folds. Testis follicles are in 2 longitudinal series, each of about 6 follicles.
One or 2 embryos are in the atrial cavity of specimens collected from Cockburn Sound in

January, Pearson I. in November, Heron I. in November, and Westemport (Kott 1976) and Western Australia in December. The larval trunk is 0.6 mm long, and the tail is wound almost halfway around it. From each location larvae have from 7 to 14 small adhesive organs. These are on fine stalks expanding into cones at their base, and are in the mid-line
around the anterior half of the trunk. Scattered epidermal vesicles arise in an arc from the lateral line on each side of the adhesive organs.

Remarks

The species is distinguished by its firm colonies with sand in the basal half, its small zooids. 15

FIG. 104: Aplidium triggsense - a, b, zooids (WAM 23.84, QM GH5305); c, larva (AM Y1428). Scales: a, b, $0.5 \mathrm{~mm} ; \mathrm{c}, 0.2 \mathrm{~mm}$.
stomach folds and remarkable larvac which, with 12 adhesive organs, seem adapted to make a firm adherence to the substrate in the stringent habitats from which it has been taken.

The colonies from 8 cm in the lagoon, New Caledonia (Monniot 1987) are flattened lobes, joined basally, similar to the newly recorded upright lobe from Heron I.

This was previously regarded as a temperate species, but tropical records demonstrate a wider geographic rangc. The alternate possibility that different species are represented is not supported by the morphology of either colonies, zooids or larvae, which are all similar, with only small intrapopulation variations in size, number of stigmata, stomach folds, and adhesive organs.

Variation from the usual number (3) of adhesive organs occurs in A. multipapillatum Millar, 1975, from the China Sea, which has 7. It is probable that the large number in this apparently unrelated species is a convergent character, selected for in response to environmental pressures.

Aplidium uteute Monnniot and Monniot, 1987
(Fig. 105)
Aplidium uteute Monniot and Monniot, 1987, p. 79.
Aplidium phortax: Kott, 1963, p. 109.
Aplidium latusexilus Monniot, 1987, p. 523.

DISTRIBUTION

New Records: Queensland (Capricorn Group, QM GH1342 GH5132-48 GH5220-3 GH5313 GH5510 GH5524-5 GH5598-601 GH5610 GH5621-6).
Further Records: Queensland (Sarina - Kott 1963). Western Pacific (Solomon Is - Kott 1963; New Caledonia - Monniot 1987; French Polynesia Monniot and Monniot (1987).

DESCRIPTION

External Appearance: The colonies form flat-topped cushions, to sheets fixed by a large part of the under surface, or they reducc in diameter toward the base to form flat-topped mush-room-like colonies about 1 cm in maximum diameter and 0.5 cm high, fixed by a small part of the under surface. The test is firm, clear and transparent in lifc, honey-coloured, 'rufous' (Ridgeway 1886), or colourless. It is only rarely cloudy, although it usually does become so in preservative. The living zooids, seen through the clear, transparent test, are red, 'chrome scarlet', 'buff-yellow', 'orpiment orange', 'salmon-coloured', cream with orange stomachs, or with 'orange chrome' thoraces and flesh-coloured
branchial apertures, with 'geranium-coloured' or 'dragons-blood red' abdonina, and often a 'drag-ons-blood red' patch each side of the base of the atrial lip or between the apertures (Ridgeway 1886). Sometimes 4 lines of dark orange pigment radiate out from the branchial aperture, including one along each side of the endostyle. Embryos when these are present, are 'saturn red', 'burnt carminc' (Ridgeway loc. cit.) or maroon. In preservative the test is yellowish and translucent and the zooids white or cream. The zooids are arranged in conspicuous circular systems of 7 to 10 zooids. Sand is often present around the outer margin of the colony, but is never embeddcd internally.

InTERNAL STRUCTURE: Zooids are up to 8 mm long in semicontracted condition. They have large, rounded, sometimes subdivided branchial lobes and a large, fleshy, sometimes 2-lobed atrial lip from the upper border of the atrial aperture, which also has lobes around its posterior margin. Longitudinal muscles on the thorax are fine, and numerous (about 20), extending the whole length of the zooid in a wide ventral band. There are 9 to 11 rows of up to 25 stigmata in the wide thorax. The thorax is large probably exceeding the length of the posterior abdomen when it is not contracted. In preserved specimens there often is a crescent-shaped patch of greenish coagulated blood near the top of the abdomen, probably an artefact associated with the removal of the colony from the substrate.

The stomach is large and cylindrical with from 25 to 35 fine parallel longitudinal folds. The duodenal arca and mid-intestine are continuous, and open into the oval posterior stomach at the base of the descending limb. A rectal valve is at the junction of the distal part of the mid-intestine and rectum at the end of the abdomen.

An ovary with up to 5 oocytes is about onc-third of the distance down the posterior abdomen. The pear-shapcd male follicles are posterior to the ovary, sometimes bunched but in other specimens spread out in an irregular longitudinal series. The posterior abdomen in this species is relatively short, often stumpy and only occasionally more than twice the length of the rest of the zooid.

Usually one or 2 , but occasionally up to 5 , embryos are in a brood pouch that projects out from, and is constricted off from, the posterodorsal comer of the thorax in zooids collected at Heron 1. in May to August. The tailed larvae have a 0.65 to 0.8 mm long trunk, and are deep sometimes almost spherical. The tail is wound twothirds of the way around the trunk. Three or 4 fine,

FIG. 105: Aplidium uteute - a, surface view of colony indicating systems (QM GH5134); \mathbf{b}, zooid with embryos in brood pouch (QM GH5145); c, larva (QM GH5623). Scales: a, 5 mm ; b, 0.5 mm ; c, 0.1 mm .
sometumes branched, stalks with lerminal ectodermal vesicles extend out from the anterior mid-line in each interspace between the adhesive organs; and 20 vesicles develop in the same way from each lateral line around the anterior end of the larva. There are 3 rows of stigmata and a lage ocellus and otolith in the cerebral vesicle.

REmarks

The characteristics of this species are its transparent test, conspicuous circular systems, wide thorax, selatively long cylindrical stomach with numerous folds, postern-dorsal thoracic brood pouch, deep larval trunk with median epidermal vesicles alternating with the adhesive organs, and arc of about 20 vesicles along each lateral line. Stomachs are orange, some red pigment in the zooids, embryos and larvae are maroon-coloured.
The Australian material appears to be conspecific with Aplidium utent Monniot and Monniot, 1987 from French Polynesia which has a similar stomach, large atrial aperture with the upper rim produced into a large lip, embryos incubated in a brood pouch constricted off from the thorax, sed pigment each side of the neural complex, and apparently circular systems. The number of rows of stigmata are the same but unfortunately the number per row is not recorded for the Polynesian material. The number of stomach folds of the Polynesian type is said to be 50 , but the number shown in Fig. 28 (Monniot and Monnint 1987) appears to be no more than 35. Monniot and Morniot (1987 , Planche V-H) compared the species with a range of probably untelated specimens assigned by various authors (Tokioka 1953, 1967a: Kotl 1972, 1975; Nishikawa 1984a) to A. pliciferum Redikorzev, 1927 from the nothwestern Paxific. Apludium uteute is readily distinguished from these by many characters. However, there are others that appear to have closer affinities with which it was not compared.

Aplidiam latuseximus Monniot, 1987 has circular systenis, and, like A. weure. red pigment patches each side of the neural gland, a large atrial aperture with a large lip, 10 rows of stigmata with up to 28 per row and lateral as well as median epidermal vesicles in the larva. Monniot (1987)
has discussed its relationship with A. multiplicatum (A. califomicum: Monniot 1987), but not with A. uteure with which it appears to be synonymous. Aplidism tutente is readily separated also from A. multiplicatum by its larvae, the form of the systems, the number of stigmata per row (i.c. the width of the thorax), and the consistercy of the test.
Kott (1963) assigned specimens of the present species to Aplidium phortax (Michaelsen, 1924) from New Zealand. However, despite similarities in the colonies and broad pouches, A. urente has a wider thorax than the New Zealand species which has only 9 or 10 stigmata per row. The larva of A. phortax is not known.
Aplidium flavolineatum (Shuiter, 1898) From South Africa (sec also Millar 1962) has zooids arranged in conspicuous round to oval systems, and embryos incubated in a brood pouch slightly constricted off from the thorax. Michaelsen (1934) thought it was synonymous with A. phortax. however A. flavolineatum differs from boh A. phortar and the present species by having embedded and encrusting sand, generally more stomach folds (although the numbers overlap. and the stomachs are a similar shape) and by usually being a red colour in life. Also, A. flovolineatum incubates up to 4 embryos in the brood pouch and has a larval trunk of 1 mm with median ampullae and some large lateral vesicles or ampullae (Millar 1962); while A. uteme has a larval trunk less than 0.8 mm long with more numerous epidermal vesicles.
Aplidium flavolinearum: Monniot, 1987, has circular systems, brood pouch, and stomach resembling those ol the present species. However the larvae, found in the single colony that Monnior described, have fewer epidermal vesicles than A. ureute. These vesicles, like those of A. altariumt remain altached to the trunk epidermis. Aplidium altarium also has a large number of stomach folds, but is distinguished by its converging double row systems.
Aplidium ornatum is another species with large numbers of stomach folds, but its larvae lack the long ares of evenly spaced epidermal vesieles that characterise the larvae of the present species.

PLATE 1: a, Monniotus australis (QM GH4147 Price I., SA). b-d, Condominium areolatum n.gen. n.sp. (b, QM GH4 161 Taylor I. SA; c, d, QM GH5418 central Great Barrier Reef Qd 20m). e, f, Ritterella asymmetrica (e, QM GH4 195 Hopkins I. SA; f, QM GH5445 Cape Jaffa SA). Photos: a, e, S.A. Shepherd; b, W.H. Sasse; c, d, f, AIMS Bioactivity Gp, Q66-C1723-C2457.

PLATE 2: a, b, Ritterella compacta n.sp. (a, QM GH2399 holotype Flinders I. SA; b, QM GH4177 The Gap SA). c, Ritterella cornuta n.sp. (QM GH4176 holotype Price I. SA). d, Ritrerella dispar (QM G12001 Lord Howe I_{s}). e, Ritterella multistigmata n.sp. (QM GH5463 holotype Rockingham WA). f, g, Ritterella pedunculata (f, QM G10156 George's Bay Tas. 5m; g, QM G10160 Phillip Bay Vict. 10m). Photos: a, N. Holmes FL975-PE0030; b, c, W.H. Sasse 9.4.87 7.4.87; d, f, g, N. Coleman AMPI 250211 170; e, AIMS Bioactivity Gp Q66-C2822.

PLATE 3: a, Euherdmania rranslucida n.sp. (QM GH2310 Flinders I. SA). b, Pseudodistoma acuatum n.sp. (QM GH2323 holotype Ward I. SA). c, d, Pseudodistoma australe (QM G92 Exmouth Gulf WA). e, f, Pseudodistoma candens n.sp. (QM GH5462 Rockingham WA). Photos: a, b, N. Holmes FL985-PE0064; c, d, N. Coleman AMPI 76 77; e, f, AIMS Bioactivity Group Q66-C2798.

PLATE 4: a-e, Pseudodistoma gracilum n.sp. (a, QM G1 1989 Kangaroo. I. SA; b, QM GH4158 Cathedral Rock SA; c, Kangaroo I. SA; d, QM GH4167 paratype Grindal I. SA; e, ? SA). f, Pseudodistoma inflatum n.sp. (QM G9472 paratype Byron Bay NSW). Photos: a, c, f, N. Coleman AMPI 227223 158; b, d, W. H. Sasse 23 19; e, R. Kuiter 47SS.

PLATE 5: a, Pseudodistoma oriens n.sp. (Port Phillip Heads Vict.); b-d Pseudodistoma pilatum n.sp., showing colour variants (b?; r, SAM E2409 paratype Cathedral Rock SA; d, QM GH4 140 paratype Golden I. SA). e, f, Pseudodistoma pulvinum (e, QM GH2396 holotype Ward I SA, in caves; f, QM GH2300 Flinders I. SA).Photos: a, J. Watson April 1977; b, R. Kuiter 54SS; c, d, W.H. Sasse 20 10; e, f, N. Holmes FL979-PE00 12 FL964-PE0060.

PLATE 6: a, b, Polyclinum incrustatum (a, QM GH4141 Perforated I SA; b, The Gap, QM GH4163). c, d, Polyclinum marsupiale (c, QM G10138 Kingston Jetty SA; d, QM G10175 Deal I. Bass Strait)). e-g, Polyclinum nudum n.sp. Coffs Harbour NSW, showing colour variants (e, QM GH5387; f, QM GH5388; g, QM GH5390). Photos: a, b, W.H. Sasse 34 3; c, J.E. Watson September 1977; d, N. Coleman AMPI 114 6.5.74; e-g, AIMS Bioactivity Gp Q66-C1108-C1129-C1131.

PLATE 7: a, Polyclinum tenuatum n.sp. (QM GH5444 Cape Jaffa SA). b, c, Polyclinum terranum n.sp. QM 5460 holotype Rockingham WA (b, distant view showing top of colony exposed on surface of substrate; c, close up). d, Aplidiopsis mammillata n.sp. QM GH1468 holotype Cathedral Rock SA). e, Aplidiopsis sabulosa n.sp. (QM GH4 153 holotype Avoid Bay SA). f, Sidneioides tamaramae (QM G11859 South Ulladulla NSW). Photos: a, b, c, AIMS Bioactivity Gp Q66-C2455-C2794; d, e, W.H. Sasse; f, I. Bennett 27.1.87.

PLATE 8: a, Synoicum bowerbanki (Blacknose Point Portland Vict.). b, Synoicum buccinum n.sp. (QM GH5045 holotype Marion Reef, Coral Sea). c-e, Synoicum castellatum n.sp. (c, QM GH5401 Exmouth Gulf WA; d, Great Keppel I. Qd 10m; e, QM GH5322 Lizard I. Qd). I, Synoicum citrum n.sp. (QM GH2294 Port MacDonnell SA). g, Synoicum concavitum n.sp. (QM GH5465 holotype King George Sound WA). Photos: a, J.E. Watson June 1979; b, d, N. Coleman AMPI 209 243; c, e, g, AIMS Bioactivity Gp Q66-C1362-B2069-C2889; f, N. Holmes PM1193-PE0073.

PLATE 9: a, Synoicum macroglossum (QM GH5421 Mackay Qd). b, Synoicum prunum (QM GH5394 Arrawarra NSW). c-e, Synoicum sacculum n.sp. (c, d, QM G10163 holotype Flinders Vict. 5m; e, Tipara Reef SA). f, g, Synoicum suarenum n.sp. (QM GH5377 Hardy Reef Qd). Photos: a, b, f, g, AIMS Bioactivity Gp Q66-C1880 -C1175-C0872; c, d, N. Coleman AMPI 201; e, S. Shepherd 13.5.82.

PLATE 10: a, b, Aplidium acroporum n.sp. (a, QM GH5443 paratype Kangaroo I. SA; b, SAM E2554 holotype The Gap SA). c, d, Aplidium altarium (c, QM GH5557 Houtman's Abrolhos WA; d, QM GH5522 Heron I. Qd). e, Aplidium bacculum n.sp. (QM GH5434 holotype York Peninsula SA). f, g, Aplidium brevilarvacium (f, ? SA; g, QM GH2412 Ward I. SA). Photos: a, e, AIMS Bioactivity Gp Q66-C2445-C2304; b, W.H. Sasse 14; c, d, N. Coleman AMPI 60 150; f, R. Kuiter 43SS; g, N. Holmes WD894-PE0020.

PLATE 11: a-f Aplidium caelestis (a, b, whole and part of colony respectively QM GH5430 Kangaroo I SA; c, d, whole and part of colony respectively QM GH5437 Edithburgh SA; e, QM GH5428 Kangaroo I. SA; f, Grindal I. SA). Photos: a-e, AIMS Bioactivity Gp Q66-C2186-C2317-C2184; f, W.H. Sasse 6.

PLATE 12: a-f, Aplidium clivosum n.sp. (a, QM GH2417 Hotspot SA; b, QM GH5469 Geographe Bay WA; c, QM GH5447 Beachport SA; d, ? South Australia; e, QM GH5628 Jervis Bay NSW; f, QM GH5305 Flinders I. SA).Photos: a, f, N. Holmes HS1035-PE0008 FL792-PE0050; b, c, AIMS Bioactivity Gp Q66-C2928 -C2493; d, R. Kuiter SS51; e, N. Coleman AMPI 78.

PLATE 13: a-c, Aplidium crateriferum (a, Heron I. Qd; b, QM GH5406 Montebello I. WA; c, Heron I. Qd). d-f, Aplidium lenticulum n.sp. (d, QM GH5457 Rockingham WA; e, QM G9475 Carnac I. WA; f, Denmark WA). Photos: a, c, e, f, N. Coleman AMPI 14619746 119; b, d, AIMS Bioactivity Gp Q66-C1548-C2780.

PLATE 14: a-c, Aplidium lunacratum nom. nov. (a, QM GH5429 Kangaroo I. SA; b, c, QM GH5446 Cape Jaffa SA). d-f, Aplidium multiplicatum (d, QM G10151 Wistari Reef Qd, with Prochloron on surface and in cloacal canals; e, Heron I. Qd; f, QM GH5361 Darwin Harbour NT). Photos: a, b, c, f, AIMS Bioactivity Gp Q66-C2185-C2458-C0635; d, e, N. Coleman AMPI 160, Nov. 1987.

PLATE 15: a-c, Aplidium opacum (a, QM GH5440 Edithburgh SA; b, c, Port Hacking NSW 3m, 5m). d-f, Aplidium petrosum n.sp. (d, e, QM GH5454 Cape Jaffa SA; f, QM GH4165 The Gap SA). Photos: a, d, e, AIMS Bioactivity Gp Q66-C2376-C2728; b, c, N. Coleman AMPI 255; f, W.H. Sasse 32.

PLATE 16: a, b, Aplidium protectans (\mathbf{a}, QM GH5378 central Great Barrier Reef; b, QM GH5336 far northern Great Barrier Reef). c, Aplidium robustum n.sp. (QM GH5467 holotype King George Sound WA). d, Aplidium rubricollum (QM GH4191 Golden I. SA). e, f, Aplidium tabascum n.sp. (e, QM GH5208 holotype Heron I. Qd; f, QM G9726 Heron I. Qd). Photos: a-c, AIMS Bioactivity Gp Q66-C0897-B2177-C2914; d, W.H. Sasse 14; e, f, N. Coleman AMPI 20785.

LITERATURE CITED

ABBOTT', D.P. and TRASON, W.B. 1968. Rillerellat rubra and Distaplia smithi: two new colonial ascidians from the west eoast of Norlh America. Bulletin. Southern Califormia Academy of Sciences 67(3): 143-154.
BERRILL, N.J. 1935. Studies in funicate development IV. Asexual reproduction. Philosophical Transactions of the Royal Zoology London, B 225: 327-379.
1950. The Tunicata. Ray Socicty Publications 133: $1-354$.
BREWVIN, B.I 1950a, Ascidians of New Zealand, Part 4 - Ascidians in the vicimty of Christeturch. Transactions of the Royal Sociely of New Zealand 78(2-3): 344-353.
1950h. Ascidians of New Zealand, Part5-A ceidians from the cast coast of Great Barrier Island. Transactions of the Royal Society of New Zealand 78(2-3): 354-362.
1951. Ascidians of New Zealand, Part 6 - Ascidians ol the Hauraki Gulf, Pan 2. Transactions of the Royal Soeiety of Now Zeatand 79(1): 104113.
1952. Ascidians of New Zealand, Part 7 - Asciblans from Otago cuastal waters, Part 2, Transaclions of the Royal Soeiety of New Zeatand 79(3.4): 452-458.
1956. Ascidians front the Chathans Is and the Chatham Rise. Transactions of the Royal Socicty of New Zealand 84(1), 121-1.37.
1957. Ascidians of New Zealand. Parl 10 - Aseidians from morth Auckland. Jransactions of the Royal Suciety of New Zauland 84(3). 577-580.
1958. Ascadians or New Zealand, Part 11 - Ascidians of the Stewarl Island region. Transactinns of the Royal Snciety oll New Zealand 8513): 439453.

CARLJSLE, D.B. 1951. On the hommal and neural contmi of the rebease of cyametcs in ascidians. Journal of Experimental Biology 2S: 463-471.
CTONEY, R.A. 1977. Larval athesive urgans and metanourphosis in ascidians 1. Fille structure of the everting papillae of Otwaplici ocridentahs. Cell ano Tissuc Research 183: 423-244.
1990. In Adiyodi, K.G and Adiyodi. R.G. (Lds) 'Reproductive Biology of Inventebrates, vol IV Erribisation, Developinent and faremal Care, Pail B' pp,391-452 (John Wilcy and Sons Chichester and New York).
FilKE, M. 1983 Self and non-sclf recogntion between gametes of the aschdian Holocymhara motei Wil hem Roux's Archive of Developmental Bialugy 192(6): 347-352.

GIARD. A.M, 1872. Recherches sur ies aseidies composćes ou synascidics. Archives de Zoologie Expérimentale et Générale 1: 501-704.
HARANT, H. 1931. Contribution à l'histeire naturelle des aseides et leurs parasites. Annales de l'Institul Océanographique Monaco 8(4): 229-389.
HARTMEYER, R. 1905. Ascidien von Mauritius. Zoulogische Jahrbiucher 8: 383-406.
1908. Zur Terminologie der Familien und Gatungen der Aseidien. Zoologisehe Annalen 3: 1-13.
1909. Aseidien (continuation oll work by Seeliger). In Bronn, H.G. (ed. 'Klassen und Ordnungen des Tiertcichs vol. 3. suppl. (89-89): p. 1281-1772 (C.F. Winter: Leipzig). Abstract, repeating lists of species, by Sehepotiell, A. 1911, Archiv für Naturgeschichic 6: 3-27.
1912. Dic Ascidien der Deutsehen Tielsee Expedition. Wissensehaftiche Ergehnisse der Deutschen Tiefsec-Expedition auf dem Dampier Valdivia 1898-189916(3); 223-392.
1915. Ueber emage Ascidien aus dem Golf vol Suez. Sitzungsberichte der Gesellschafi natufforschender Freunde zu Berlin 1915: 397-430).
1919. Results of Dr E. Möberg's Swedish scientific expeditions to Austritia 1910-191323 Ascidien. Kungliga Svenska Velenskapsakademiens Handlingar 60 (A). $1-150$.
HASTINGS. A.B. 1931. Tunicata. Scientific Reports of the Greal Batrier Rcef Expedition 4(3); 69169.

HERDMAN. W.A. 1886. Report on the Tunicata collected during the vayage of H.M.S. Challenger dluring the years 1873-76. P1. II, Ascidiate compositate. Report on the Scientific Results of the Voyage of HMS Chollenger during the years 187.3-76. 14(38): 1-125.
1899. Descriptive catalogue of the Thacata in the Australian Muscum. Ausiralian Muscum, Sydney, Catalogue, 17: 1-139.
1906. Reprot on the Tunicatia. Report to the Government of Ceylon on the Pearl Oyster Fislienes of the Gulf of Manaar Supplenentary Roports 39: 2y5-348.
HERDMAN. W.A and RIDDELL, W. 1913. The Thinicata abtained during the expedition of the HMCS Thetis on the eoast of New South Wales in 1898.10 "Scientific results of the Trawl Expedulinn Thetis'. Nemoirs of the Australian Messeum 4(17): 873-889.
HOSIINO, Z. NUMAKUNAI, T. SUZUKil, M.. and SLZUki. S. 1985. Studies un the spawning ol the akendians Cinmo wivignsi and Cione intessimblis. Zonological Science (Tokvo) 2(6). Abstract DB54:939.

KAWAMURA, K., FUJITA, H. and NAKAUCH1, M. 1987. Cytological characteristics of self incompatability in gametes of the ascidian Ciona intestinalis. Development, Growth and Differentiation 29: 627-642.
KESTEVEN, H.L. 1909. Studies on Tunicata no. 1. Proceedings of the Linnean Society of New South Wales 34: 276-295.
KOTT, P. 1957. Ascidians of Australia Il. Aplousobranehiata Lahille; Clavelinidae Forbes and Hanley and Polyclinidae Verrill. Australian Journal of Marine and Freshwater Rescarch 8(1): 64110.
1963. The ascidians of Australia IV. Aplousobranchiata Lahillc; Polyclinidae Verrill (continucd). Australian Journal of Marine and Freshwater Research 14(1): 70-118.
1966. Ascidians of northern Australia. University of Queensland Papcrs, Department of Zoology 2(15): 279-304.
1969. Antarctic Ascidiacea. A monographic account of the known species based on specimens collected under U.S. Government auspices 1947 to 1963. Antarctic Research Series 13: $\mathrm{i}-\mathrm{xv}, 1-$ 239.

1972a. The ascidians of South Australia 1. Spenecr Gulf, St Vincent Gulf and Encounter Bay. Transaetions of the Royal Society of South Australia 96(1): 1-52.
1972b. The ascidians of South Australia 11. Eastern Sector of the Great Australian Bight and Investigator Strait. Transactions of the Royal Socicty of South Australia 96(4): 165-196.
1972c. Notes on some ascidians from Port Jackson, Botany Bay and Port Hacking NSW. Proceedings of the Linnean Society of New South Wales 97(4): 241-257.
1972d. Some sublittoral ascidians in Moreton Bay and their seasonal occurrence. Memoirs of the Queensland Museum 16(2): 233-260.
1974. The evolution and distribution of Australian tropical Ascidiacea. In 'Proccedings Sccond International Coral Reef Symposium'. Vol. 1, pp. 406-423 (Grcat Barrier Rccf Committee: Brisbane).
1975. The ascidians of South Australia Ill. Northern sector of the Great Australian Bight and additional records. Transactions of the Royal Society of South Australia 99(1): 1-20.
1976. Ascidian fauna of Western Port Bay, Victoria and a comparison with that of Port Phillip Bay. Memoirs of the National Museum of Victoria 37: 53-96.
1980. Algal-bearing didemnid ascidians in the 1ndoWest Pacific. Memoirs of the Queensland Museum 20: 1-47.
1981. The ascidians of the reef flats of Fiji. Proccedings of the Linnean Society of New South Wales 105(3): 147-212.
1982. Replication in the Ascidiacea: an adaptive strategy in the eoral reef environment. In 'Procccdings fourth International Coral Reef Symposium Manila 1981' Vol. 2, pp. 725-733 (University of the Philippines: Manila).
1985. The Australian Ascidiacea Pt 1, Phlebobranchia and Stolidobranchia. Memoirs of the Queensland Museum 23: 1-440.
1989. Form and Function in the Ascidiacea. Bulletin of Marine Science 45(2): 253-276.
1990. The Australian Ascidiacea Pt 2, Aplousobranchia (1). Memoirs of the Queensland Muscum 29(1): 1-266.
KOTT, P. and GOODBODY, 1. 1982. The ascidians of Hong Kong. In Moreton, B.S. and Tseng, C.K. (eds) 'Proceedings of the First International Marine Biological Workshop: the Flora and Fauna of Hong Kong and Southern China' vol. 1, p. 503-554 (Hong Kong University Press: Hong Kong).
KOTT, P., PARRY, D.L. and COX, G. 1984. Prokaryotic symbionts with a range of ascidian hosts. Bulletin of Marine Sciencc 34(2): 308-312.
LAHILLE, F. 1887. Sur la classification des tunicicrs. Comptes Rendus Hebdomadaires des séances dc 1'Acadamie des Scicnces, Paris 102: 1573-1575.
1890. 'Recherches sur les tuniciers des côtes de France' (Toulouse) 330 pp .
LITSCHER, E. and HONEGGER, T.G. 1991. Glycoprotein inhibiting constitucnts of the vitelline coat of Phallusia mammillara (Ascidiacca) with fertilisation inhibiting activity. Devclopmental Biology 148(2): 536-551.
MICHAELSEN, W. 1919. Dic Krikobranchen Ascidien des westlichen Indischen Ozeans: Clavcliniden und Synoiciden. Jahrbuch der Hamburgischen wissenschaftlichen Anstalten 36: 71-102.
1920. Ascidiae Krikobranchiac des Roten Mcercs: Clavelinidae und Synoicidae. In 'Expedition S.M. Schiff Pola in das Rotc Meer, nördliche und südliche Hälfte 1895/96-1897/98' Zoologischc Ergebnisse xxxiii. Denkschriften der Akademic der Wissenschaften Wien 97: 1-37.
1923. Neue and altbckannte Ascidien aus dem Reichsmuseum zu Stockholm. Mitteilungen aus dem Zoologischen Staatsinstitut und Zoologischen Museum in Hamburg 40: 1-60.
1924. Ascidiae Krikobranchiae von Neusceland, den Chatham und den Auckland Inseln. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kobenhavn 77: 263-434.
1930. Ascidiae Krikobranchiae. Fauna SüdwestAustraliens 5(7): 463-558.
1934. The ascidians of the Cape Province of South Africa. Transactions of the Royal Socicty of South Africa 22(2): 129-163.
MILLAR, R.H. 1953. On a collcction of ascidians from the Gold Coast. Procecdings of the Zoological Scriely, London 123(11): 277-325.
1954. Pseudodistomta africanum n.sp., a new compound ascidian from South Africa. Annals and Magazine of Natural History (12)7: 128-132
1956. Ascidians from Mozambique. East Africa. Annals and Magazine of Natural History 9(12). 914-932.
1960. Ascidiacea. Discovery Rcports 30: 1-160.
1961. Euherdmartia vitrea, a new species of ascidian from Brazil. Annals and Magazine of Natural History (13)4: 143-147.
1962. Further descriptions of South Africal ascidians. Annals of the South African Museum 56i(7): 113-221.
1963. Australian ascidians in the British Muscum (Natural History). Proceedings of the Zoological Saciety, London 141(4): 689-746.
1966. Ascidiacea, Port Phillip Survey, Memoirs of the National Museum of Victorias 27: 357-375.
1967. A new ascidian of the genus Psendodistomat from Madagascar. Journal of Naturad History 1: 359-361.
1975. Ascidians from the Indo-West Pacific region in the Zoological Museum, Copenhagen (Tunicata: Ascidiacea). Stecnstrupia 3(20); 205-335.
1977. Ascidians (Tunicata: Ascidiacea) from the northeeastern Brazilian Shelf. Journal of Natural History 11(2): 169-223.
1978. Ascidians from the Guyana Shelf. Netherlands Joumal of Sea Rescarch 12(1): 99-106.
I982. The marine fauna of New Zealand. New ZeaIand Oceanograbic listitute Memoir 85: 1-1 17.
1988. Ascidians collected during the International Indian Ocean Expedition. Journal of Natural History 22: 823-848.
Millar. R.H. and GOODBODY, I. 1974. New species of ascidian from the West Indics. Sudics on the Fauna of Curaçao and oller Caribbean Islands. 45(148): 142-161.
MILNE-EDWARDS, H. 1842. Observations suit les ascidies composées des côtes de la Manche. Mémoires de I'Académie des Sciences de J'Instiiut de France 18: 217-326.

MONNIOT, C. and MONNIOT, F. 1976. Ascidies de la cóte du Mozambique. Revue de Zunlogic Af. ticaine 90(2): 357-393.
1984. Ascidies littorales de Guadeloupe VIl. Espèces nowvelles et complénentaires a I'invertaire. Bulleuin du MusEum National d'Histaire Naturelle séric A(AB) (6. 567-582.
1987. Les ascidies de Polynesic francaise. Mémoires du Musćum National d'Histesirs Naturelle 136: 1-155.
1991. Tunicata:penplement d'ascidies profondes eal Nouvelle-Càlélonie, divervité des stratégic adaptatives. In Crosnicr, A. (ed.) 'Rêsulats des Campagnes Musurstom, Vulume B' $^{\text {² }}$, Mêmoires du Muséum National d'Histoire Naturelle (1)151: 357-448.
MONNIOT, F. 1472. Ascidies aplousobranches des Bermudes. Polyclinidae el Polycitoridac. Bulletill du Muséum National d'Histoire Naturelle Paris série 3 Zool. (82) 61: 949-962.
1974. Ascidics littorales et bathyales récoltéex au cours de la campagne Biaçores: Aplousobranches. Bulletin du Musćum National d'Hisruire Naturelle série 3 (251) Zoologie 173 : 1287-1326.
1983. Ascidies littorales de Guadeloupe III. Polychuidac. Bulletin du Muséum National d'Histoire Naturelle série 4 (A2) 5: 413-422.
1987. Ascidics de Nouvelle-Calćdonie III. Pôlyclinidae du Jagon. Bulletin du Muséum National d'Histoire Naturelle série 4 (A3) 9: 499-535.
MONNIOT, F. and MILLAR, R.H. 1988. Ancw gonus and species of an aplousobranchiate ascilazall (Tinncata: Ascidiaces) from New Caledonis or uncertain systematic position. Indo-Malayan 20ology 5: 321-327.
NAKAUCHI, M. 1966. Budding and colony formalinn in the ascidian Amaroucium muttiplicatum, Japxtnesc Journal of Zoology 15(2): 151-172.
1970. Asexual reproduction in Amaroucam yamazii (a colonial ascidian). Publications of at:c Scto Marine Biological Lntoratory 17(5): 309330.
1974. Development and buddug in the owhanids or polyclinid ascidians. I Siducioides summon. Reporls of the Usa Marine Biological Station 21(1.2): 1-18.
1977. Development and budding in the oozooids of polyclinid ascidians. 2. Ritrerellapulchra. Annotationes Zoologicae Japonenses 50(3): 151-1.59.
1979. Development and budding in the oozooids of polyclinid ascidians. 3. Aplidium solidum. Ammatationes Zonologicac Japomences 52(1): 40-49.
1980. Devclopment, strobilation, and efpencration in the vozuouds of Aplrdiunm nordmation (a colo-
nial ascidian). Memoirs of the Fatulty of Science of the Kochi University, Series D (Biology): 1: 11-22.
1981. Development and budding in the oozooids of Polycfinnm murantiam (a colonial ascidian) (Protochordata). Joumal of Zoology (I.ondon) 194: 1-9.
1982. Asexual development of ascidians: its biological significance, diversity, and morphogenesis. American Zoologist 22:753-763.
1987. Strobilation and colony formation in the ascidian Aplidium californicum. Memoirs of the Faculty of Science of the Kochi University, Scres D (Biology) 8: 9-14.
NAKAUCHI, M. and KAWAMURA, K. 1974a. Behaviour of buds during common cloacal formation in the ascidan, Aplidium multiplicatum. Reports of the Usa Marine Biological Station 21(1,2): 19-27.
1974b. Experimental analys1s of the behaviour of buds in the ascidian Aplidiem modripliratum, I. Reports of the Usa Marine Biological Station 21(1,2): 29-38.
1978. Additional experiments on the behaviour of buds in the ascidian, Aplidium mufriplicornm. Biological Bulletin 154(3):453-162.
1986. Asexwal reproduction of ascidians. In Parchet, M. Andries, J.-C. and Dhainaut. A. (cds) 'Advances in Invertebrate Reproduction' 4, pp. 471-478 (Elscvicr Science Phblishers B.V. Binmedical Division: Amsterdany).
NISHIKAWA. T. 1980. Ascidians lrom the coast of the Kii Peninsula, Midule Japan, with descriptions of two new species. Memoirs of the National Science Muscum (Tokyo) 13:97-111.
1984a. Ascidians from the Truk Islonds, Ponape Island and Majuro Aloll (Tunicata, Ascidiacea). Proceedings of the Japanese Soctety of Systemmatic Zoology 27: 107-140.
1984b. Contributions to the Japancse uscidian Fauna XXXXIII. Notes on the morphology and the systematic position of Placmelor en srolima Redikorzey from the North Pacific. Proceedings of the Japanese Socicly of Systematic Zoology 29: 3756.

1990, The ascidians of the Japan Sea 1. Publications of the Seto Marine Biologital Laboratory $3.4(4$ 6): 73-148.

NISHIKAWA, T. and TOKIOKA, T 1976. Contrihutions to the dapanese ascidion fauna XXVIII. Ascidians from the Amami Jslands. Publications of the Seto Marine Biological Laboratory 22(6): 377-402.
OK.A. A. 1927. Ascidjans. In 'Figuraro de 3apanaj Bestoj' p. 494-498.

1933a. Ucber Sigillinaria. eine neve Synascidiengattung aus Nordpazifik. Procecdings of the linperial Academy of Japan 9: 78-81.
1933. Ein Fall von Kolontalknospung bei ciner Synascidic. Procecdings of the Imperial Academy of Japan 9: 436-438.
PEREES, J.M. 1949. Contribution a l'étude des ascidics de la cóte occidentale d'Alrique. Bulletin de l'Institut Erançaise d'Afrique Noirc 11: 159-207.
1952. Ascidies de la rôche littorale Corse. Record du Station Marine d'Endoume 6: 35-44.
PHIPPS. C.J. 1774. "Voyuge au póle borćalc', Appendix: 194 (Landon).
PIZON, A. 1908. Ascidies d Ambione. Revae Suisse de Zoologic 16: 195-248.
REDIKORZIEV, V. 1913. Ncue Ascidien. Zoologischer Anzeiger 43: 204-213.
1927. Zehn neve Ascidien aus dern fernen Osten. Zoologische Jahrbücher 53: 373-404.
RENGANATHAN, and MONNIOT, C. 1984. Additions to the ascidian fanna of India. Bulletin du Muséum National d'Histoire Naturelle séric $\&$ (A2) 6: 257-262.
RHO, BoonJo, 1966. Taxonomic study on the prochurdates from Korea J. Ascidians. The Korean CulLural Research Institute 8: 209-216.
1971. A study of the classification and the distribution of the Korean ascidians. The Journal of Korcan Research Institutc for Better Living fo: 103-166.
1975. On the classification and distribution of the marine benthic anintals in Korea 3. Ascidians. Journal of Korean Research Institute for Better Living 15: 121-169.
RIDGEWAY, R. IS86. "A nomentlature of colours for naturalisis and compendium of uscful humwledge for omithologists' Little, (Brown and Co.: Bos(on) 129 pp .
RITTER, W.E. 1901. The ascidians. In PPapers lrom the Harriman Alaska Expedition". Proceedings of the Waslungton Acadeny of Sciences 3: 225266.
1903. The structure and affinitics of Herdntunta clonifirmis, the type ol' a new genus and family of ascidians from the coast of Califurnia. In "Mark Anniversary Volume" p. 237-261, pls xvii, xix (Henry Holl and Co.: New York).
1904. Euherdmania vs, Herdmanio prococupied. Zoologischer Anaeiger 27: 650-651.
RITTER, W.E. and FORSYTH, R.A. 1917. Ascidians of the littoral zone of southern California. University of Catilornia Publications in Zoology 16: 439-512.
RYLAND, J. and BISHOP, JD. 1990 . Prevalence ol cross-fertilisation in the hermaphrodite com-
pound ascidian Diplosoma listerianum. Marine Ecology Progress Scries 61: 125-132.
SABBADIN, A. 1979. Ascidian colonial structure and genetics. In Larwood, G. and Rosen, B.R. (eds) 'Biology and Systematics of Colonial Organisms' pp. 433-444 (Acadenic Press: London).
SANTIS, dic R. and PINTO, M.R. 1991. Gamete selfdiscrimination in ascidians: ar role of the follicle cells. Molecular Reproduction and Development 27(1): 47-50.
SAVIGNY', J, C. $1816 .{ }^{\circ}$ Mémoiressur les animaux sans vertebbres' pt 2, 239pp. (Paris).
SLUITER, C.P. 1895. Tinicaten. In Scmon, R. (ed.) 'Zoologische Forschungsreisen in Australien und dem Malagiseloen Archipel'. Denkschriflen der Medizinisch-naturwissenschuftlichen Gesellschalt 7 u Jenal 8: 163-186. Nacherag 7u den Tunicaten: 325-326.
1898. Beilrage zur Kenminiss der Fauna van Siddafrica II Tunicaten. Zoologische Jahrbücher (Systematik) 11: 1-64.
1905. Tuniciers recueillisen 1904 par m. ch. Gravicr dans le Golfe de Tadjourah (Somalic Françase). Mémoires de la Société Zoologique de France 18: 5-21.
1906. 'Tuniciers de l'Expédition antarclique Française 1903-05' (Masson: Paris) 48 pp.
1909. Die Tunicaten der Siboga Expedition P1 2. Die merosomen Ascidien. Siboga-Expeditie 56B: 1112.
1912. Les Ascidiens de 1'Expédition antaretique Française du Pourquoi-Pas? Commandece par le Dr. Charcot (1908-1909). Bulletin du Musébum d'Histoire Naturelle, 18: 452-460.
1913. Ascidien von den Aru-Inseln. Abhandlungen herausgegeben vou der Senckenbergischen Naturlorschenden Gesellsclaft 35: 65-78.
1914. Les Tuniciers Deuxième Expédition Antarctique Française (1908-10) (Masson: Paris) 39pp.
TOKIOKA, T. 1949. Contributions to the Japanese ascidian fauna 11. Notes on some ascidians colJected chiefly along the coast of Kii Peninsula. Publications of the Setu Marine Biological Lahoratory 1(2): 39-64.
1953. "Ascidians of Sagami Bay" p. 1-313, 79 pls (Iwanami Shoten: Tokyo).
1954a. Contributions to Japanese ascidian fauna VII. Invertebrate fauna of the intertidal zonc of

Use Tokara Islands. VTI Ascidians. Publications of the Seto Marine Biological Laboratory 3(3): 239-264.
1954b. Contrihutions to Japanese ascidian fauna 1X. Redeseriptions of Oka's species found in 'Figuraro de Japanaj Bestoj'. Puhlications of the Scto Marine Biological Laboratory 4(1): 69-75.
1958. Contributions to Japanese ascidian fauna Xll. Sporadic memoranda (3). Publications of the Seto Marne Biological Láhoratory 6(3): 313325.
1959. Contributionsto Japanese fana XII. Sporadic memoranda (4). Publicativus of the Seto Marine Biological Laboratory 7(2): 223-236.
1962. Contributions to Sapanese ascidian launa XIX. Additions to Japanese ascidian fauna with notes on two already known species, Publications of the Seto Marine Biological Laboratory 10(2): 260-282.
1967. Pacifle Tunicata of the United States National Museum. Bulletin, United States National Museum 251. 1-242.
1968. Contributions to the Japanese ascidian Iauna XXIV. On Sigillinaria clavala Oká, J933, Publications of the Seto Marine Biological Laboratury 16: 199-205.
TOKJOKA, T. and NISHIKAWA, T. 1975. Contrihutions to Japanese ascidian fauna XXVII. Some ascidians from Okinawa, with notes on a small collection from Hong Kong. Pablications of the Scto Marine Biological Laboratory 22(5): 325341.

TRASON, W.B. 1957. Larval structure and development of the oozooid in the ascidian Euherdmania claviformis. Journal of Morphology 100(3):510526.

TLIRON. X. 1991. Murphology al the adhesive papillae of some ascidian larvale. Cahiers de Biologie Marine 32: 295-309.
VAN NAME, W.G. 1918. Ascidiansof the Philippines and adjacent waters. Bultetin, United States National Muscum 100(1): 49-174.
1921. Ascidians of the West Indian region and south castern United States. Bulletin of the American Museum of Nalural History 44: 283-494.
1945. The North and South American ascidians. Bulletin ol the American Museum of Natural History 84: $1-476$.

INDEX TO TAXA
 (Taxon descriptions and figures in bold)

Adagnesia, 385386
Agnesiidac, 379386
Amaroncium. aequalisiphonis, 400
altarium, 519
argus, 504
crateriferum, 536
multiplicatum, 567
Anadistonta, 375387389390422440
aftenuatum. 40-4 41
Aplidiopsis, 375380382386387389390399442443 $445467-468472473474507$
amoyensis, 445468470
atlantica. 468
comfluata, 468-469
discoveryi, 468469
helenue. 468
mammillata. 468 469-470 471
pannosa, 46.8470
pyriformis, 468
sabulosa, $468470-471$
slellata. 468
tokaraensis, 468.471
Aplidium, 375380381382383384385386387390 393399400406424442443445447474483 $497504507-513527537560$
sp. 3: Kott el al. 1984, 569
acroporum, 384442512513515518560586604
africanum. 512
altarium, 376381384386387388511512514 $519-522574577584594604$
almorphattm, $380383509512517522-523577580$
arboralum, 442586
australiensc, 383494511514 523-525 550575
australiensis, 548
bacculum, 497512517526544604
brevilarvacium, $511514527-528550553577604$
caelestis, $384509512513516528-529530537544$ 557582586589590605
cacruleum. 504
californicum, 567570594
cellis, 486512513557590
circumvolutum. 523
clivosurm,485512516-530532537544551557560 577586606
colelloides, 523
congregatum. 511514 533-534
coniferum, 512516535553554564
crateriferum, 381384442484 -485491495497507 $512516530531533536-538544551560607$
depressum. 511515527538 -539564 566
digitatum, 527
directum. $512516534539-540$
distaplium, 512517 540-541
elarum. 511514 541-542563
filiforme. 376497512513517527540542 -544 584
flavolineaum, 512522546547565566567570 582583594
fluorescum. $511515534544-546548569$
foliorum, 570572
gastrolinearum. 511515 546-547567570583
gelasinum, 511515546 547-548
geminaum, 384494511514524526528534 548-551553577
griseum. 512516530544550551
hypurgon. 530
incubatum, $380511515534540547551-553573$ 584
indicum, 580
inforescens, 376494511 514 553-554 557572577
jacksoni. 511515536 554-555
lanusexitus, 592594
lenticulum, 512516530 555-557 590607
lobaum. 442491495497507510512513528561 56.3581582590
lodix, 511515553557-558
longilhorax. 579
Iunacratum, 388390512516519530531533547 548557 558-561 580608
macrolobatum. $380384389512513517561-563$ 572582
mugnilarvum, $512516563-564$
maru, 513
mernooensis, 50951.3543544
mmisculum, 511515 564-566
multilineaum, 388390511515547565 566-567 570
muhipapillaum, 389513551592
multiplicnum, $511514521544546547567-568$
572573574583594608
nadaense. 513
opacum. 511514522534542550553554557563 $567570-571583609$
ordinatum. 558560561
crnatum, $388390511515553567570572-573583$ 584594
panherinum. 530533538
paralineaum, 494512.517574
parasnginaticum, 383512517575
parvum, $511514576-577$
petrosum, $384512517542577-578589609$
phortax, 592594
pliciferum. 570572594
protectans, 380388390509512517523548560 577 579-580 610
pseudabesum, 522
recumbens, 478
ritteri, 512513517530551579581589
robustum, 388390511515547557567570 582-583 610
rosarium, 511514 583-584
rubricollum, 512516 584-585 586610
solidum, 384512517540542557579582584 586-587
rabascum, 384388390486512513517557
588-589 610
tremulum, 513563
riggsense, 389511515555 590-591
triggriensis, 590
uouo. 513
ureute. 381386388511512515521547548553 $566567570574584592-593$
Aplousobranchia, 375376378379380384387390 442
Ascidiacea, 375378379384386442
Ascidiidae, 379.386
Alopogaster. 474504507
tгорісин. 503
Botryllinae, 379384442
Botryllus, 385
schlosseri, 385
stewartensis, 534,540
Ciona, 381384
intestinalis, 385386
Cionidae, 379382385386387444
Citorclinum, 375390391422
laboutei. 422
Clavelina, 387421
cylindrica, 387
dagysa, 421
dentatosiphonis, 416
meridionalis, 421
moluccensis, 387
astrearium, 421
Clavelinidae, 379380381383387388389390392
Condominium, 375381382383390392393396504
areolatum, 384 397-399400403406413595
Corellidae, 379
Corellinae, 379
Cystodytes, 388
Diazonidae, 379380382383384385386390391444 474505
Didemnidac. 378379380381383385442475
Diplosoma, 521
listerianum, 385

Distaplits, 380381382387391505550
australiensis, 494528550
prolifera, 547
Distoma pulchra, 400416
Dumus, 375380382390398399400401412 -413 416
areniferus, 384399400413
dumasus, 412
Ecteinascidia urbinata, 385386
Enterogona, 378
Eudistoma, 382388405422440
angalamum, 405442474503
camosum, 405
reginum, 405
Eugyra, 385386
Evherdmania, 375380382383386387389390392 $393398400412413415-416417420421505$
areolata, 416
australis. 396416
claviformis, 393399415416417419
claviformis group, 416
dentatosiphonis, $381386415416-417419421$
digitata, 376386415416 117-420
digitata group. 416
dumosa, 416
fusciculuta, 390415416
gigantea, 415416417
gigantea group. 416
morgami, 414416
rodei, 415416
solida, 415416
translucido, 381386415416417 420-421597
virrea, 414415416
Euherdmaniidae, 375379380381387388390391 399 413-415 504
Euherdmaniinac, 375390441
Exostoma. 442
Hexacrobylidae, 379
Holozoidae, 379380381382383387388389390391 392399442
Holozoinac, 475
Homoeodistoma, 392
longigona, 392401
michaelseni, 392
omosum, 392397399
Hypadistoma, 388442
Hypsistozoa, 391505
Lissoclinum patella, 484537
Macroclinum.
arenaceum, 478
hypurgon, 490499
macroglossum, 494
papilliferum, 497
vitreum, 467
Molgula, 386
calvata, 385
ellistoni. 385
manhaltensis, 385
sabulosa, 385
Molgulidae, 379384
Monniotus, 375380381382383384387390392393 398399400403412415416442504527
australis 393 39ł-396412595
radialus, 384393394396397
ranosus, 393394
Morchellium. 375380386387390399443504 -505
albidum, 474505
argus. 505
intercedens. 491
ранноsum, 474484505506547
partirionis, 505
Neudistoma, 391
Nephtheis, 381
Perophora, 386
Perophoridae, 379384
Plaryngodicryon. 375 39] 399400
bisinus, 399
cauliflos. 399
elongahum, 399
magnifili, 399
mirabile, 399
Phlebobranchia, 378379381384444
Placentela, 375387390391392400
areolata, 392396397398
crystallina, 391392
ellistoni, 397
translucida, 392
Placentelidae, 375379380381382391399504
Pleurogona, 378
Plurellidae, 379
Polycarpa, 384385386
imonata. 385
rinctor, 385
finctorella. 385
Polycilor, 382384388390415
giganteunt. 579
Polycitorellar. 388
Polycitoridae, 379380381383387388390391392 422474504505
Polyclinidae, 375378379380381382383384385 387388389390391399441 -443 446
Polyclininac, 375390
Polyclinuen, 375380381382383385386387388389 $390393399400413441442443445-447448$

455450467468471472473474495497504 507509521550572
aurantium, 459
circulalum, 445452
complanatum, 445
constellatum. 443445449459467
crater. 446
depressum. 446
fesium, 441 445464467
fungosum. 376380445446447452
gelidus, 445
glabrum. $444445446448-450$
hospitale. 445
incrustatum, $445446448450-452454458461464$ 600
laxum, 463464
macrophy/lun, 452454464467
macrophyllum phorrax, 464
macrophyllum typicum, 467
marsupiale. 388445446447448452 -454 455458 461600
neplumium, 450452
nigrunt, 447
nuduи, $445446452454-455600$
orbitum. 383445446454455456467473474
pule, 463
sabulusunn, 458459
sumernium, $445446448452454455-458459463$ 464
solun. 444445446447455 458-459 460464
surulaicum, 447
єепианит, $445446454459-461497600$
terramum, $384388445446460461-462601$
tralatica, 447
isutsuï, 388445446448455457458463 -464
vasculosum, 381389443445446447450455458 463 464-467472499
Polyzoinae. 379384386442
Prochinron, 538561567569608
Protololozna, 399
Protopolyclinidae, 375379380381382386387388 389390391392393399401442504
Protopolyclinuut. 375382390391392393
Psammaplidium.
fragile. 586
incrustans. 586
lobatum, 586
ordinatum, 558560
peduuculatum, 410
ргинит. 498
solidum, 586
Pseudodistoma, $375381383387389390392422-425$ 428440441444446524
асиснит, $422423424425-426431439597$
africanum. 425430431438
antinboja, 425
arborescens, 422425428436
aurea, 426
aureum, 387422423424425426436
ausirule, 376423424425428 -430 438597
ausiralis, 428
brieni, 422424425
candens, $386389423424430-433438439480597$
ceremm, 390422424425426428430431433436 439440
cyrmusense, 424425430433
fragile. 384424425433434
gracilum, 384.386422423424425433-435440598
inflaum, 423424428 435-436598
kanako, 422424425
novaezelandiae, 422425428436
орасни, 422425428436439
orions, 389390422423424425439431 436-439 599
pilormm, 423424426431436439599
pulvinum, $422423424425439-440599$
Pscudodistomidae. 375379380381382386387388 389390391399 421-422 442 504
Pycnoclavella, 380384389393420421422
Pycnoclavellidue, 379380383386387388.390 .391 415422
Pyura, 386
liftoralis. 385
Pyuridae, 379385
Rhodosomatinac, 379
Rhopalaea, 384
Rillerella, 375381384386387388389390392393 $398399400-402405407409412422442474$ 504527
aequalisiphomis, 399400402408
aequalisiphonis group, 400
arenosa, 392400401413
asymmetrica. $3813823833843983994004(1)$ 402-403406409410412413595
circularis, 400401
rompacta, $381382383400401403-405410442$ 596
cormита, $381 \quad 382 \quad 383 \quad 393 \quad 398399400401403$ 405-406409410412442596
dispar, $389399400401406-408421$
glareosa, 400401
herdinania, 410413
multistigmata, 382383389390399400401 408-409442596
pupillata, $381382383384399400401406409-410$ 412442
pedintculata, 380381383384399400401402403 $406409410-412413596$
pedurculata group. 400
prolifera, 400401408
proliferus, 406
pulchra, 389
rubra. 400
sigillinoides, 400401402
lokioka, 400413
vestira, 400402
yamazii, 400402413
Ritterellidae, 375379380381382383387388389 390391393399400442505

Sidneinides, 375381386387389442443467
471-472474
japonense, 472
snamori, 472
famaramae, 471 472-473601
Sidnyum, $390443509-510$
appendicnlatmr, 509
elegans, 509
indicum, 509
pentatrema, 509
nurbinatum, 509
Sigillina, 381382388389422424440447504
grandissima, 428
miöbergi. 388
nigra, 447
Sigillinaria, 392400
arenosa, 392
aurea. 426
clavata, 391392
novaczelandiae. 392
pulchra, 400416
Stolidobranchia, 375379384442
Stomuzoa, 415421
Stomozoidac. 379.381
Styelidae, 379
Styclinae, 379
Sycozoa, 381382385387505524540550
Synoicidae, 442
Symoicum, 375381382385386387388390399400 $402442443448460467472473-477505507$ 510541550
angnstum, 475476477
apectermm, 475483
appendiculanum. 509
arenaceum, 475476477478483
atopogaster. $386474475476478-479504506507$ 560
bowerbanki, $474476480-481541602$
buссіпи", $475476478481-482602$
castellatum, $382389442475476483-484537560$ 602
chrysanhemum, 475476486495
cilrum, 475476486495602
clavalum. 501503
concavitum, 474475476480487506602
durum, 475476488497
erectum, 475476478489501
galei, 475476490
haurakiensis, 475
herdmani, 475478
hypurgon, 447475490491528
intercedens, $474476491-492497503$
investum, 586
kuranui, 475478489501503
longistriatum, 475476493
macroglossum, 474475476493494497603
obscurum, 475476496540
occidentalis, 477
otagoensis, 477
papilliferum, 459460474475476491495497499 partitionis, 490
pererratum, 477
ргипит, 475476487490498499603
rubrum,474
sacculum, 474475476490491493497 499-500 603
stewartense, 455477527
sиarenum, 442475476489493497 501-502 603
sиesanum, 491493
tropicum, 475476488493 503-504 507
turgens, 473
Tunicata, 375
Tylobranchia, 393

[^0]: 1. Atrial apestures 6-lobed; clacal systems ruadimentary or lacking .2
[^1]: ${ }^{1}$ A, indigenous; IWP, Indo-West Pacific; te, temperate; tr, tropical.

[^2]: ${ }^{1}$ A, indigenous; te, temperate; tr, tropical; WP, Western Pacific. ${ }^{2}$ bp, brood pouch; b, no brood pouch.

[^3]: ${ }^{1}$ A, indigenous; P, Pacific ocean; WP, Western Pacific; IWP, Indo-West Pacific; te, temperate, tr, tropical. ${ }^{2}$ S, separate from rim of aperture; R, part of rim of aperture.

[^4]: ${ }^{1}$ A. indigenous; WP. Western Pacific; tr, tropical; te, temperate. ${ }^{2}$ S, separate from atrial siphon; R, from rim of atrial siphon. ${ }^{3}$ P. present; N, not present. ${ }^{4} \mathrm{~S}$, smooth; M, mulberry-like; I, itregular.

[^5]: FIG. 60. Epidermal elements of the anterior end of the larval trunk in Aplidium spp. (showing their relative position, but not their precise number for any one species; diagrammatic).

[^6]: ${ }^{1}$ A, indigenous; WP. Western Pacific; tr, tropical; te, temperate.

[^7]: ? Aplidium opacum Kott, 1963, p. 108 (par1, lobed specimen from Balnarring Beach).

